

Surface Mount

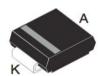
Thyristor Surge Protective Devices

Description

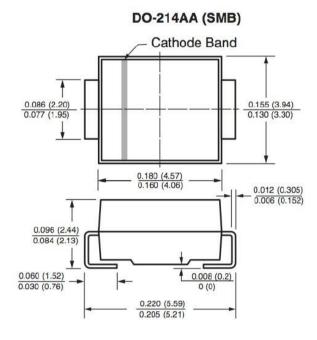
TSP0080SB – TSP4200SB Series are designed to protect broadband equipment such as modems, line card, CPE and DSL from damaging over-voltage transients.

The series provides a surface mount solution that enables equipment to comply with global regulatory standards.

Features-


- · Low voltage overshoot
- · Low on-state voltage
- Does not degrade surge capability after multiple surge events within limit
- · Fails short circuit when surged in excess of ratings
- · Low Capacitance
- · RoHS compliant package

Applications


- TIA-968-A
- ITU K.20/21 Enhanced level
- ITU K.20/21 Basic Level
- · GR 1089 Inter building
- · GR 1089 Inter building
- IEC 6100-4-5
- YD/T 1082 YD/T 993 YD/T 950

Packing Information

3,000/Reel

RoHS COMPLIANT

Graphic symbol

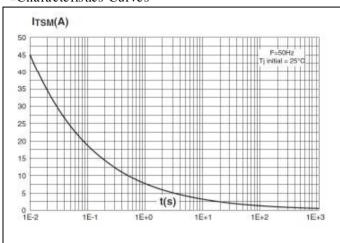
Surface Mount

Thyristor Surge Protective Devices

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute ratings @25°C Unless Otherwise Specified									
Symbol	Parameter	Value	Unit						
Ts	Storage Temperature Range	-55 to +150	°C						
T _J	Maximum Junction Temperature	150	°C						
Ірр	Repetitive peak pulse current	10/1000µs	75						
		10/560µs	100						
		10/160µs	150	A					
		8/20µs	250						
		2/10µs	250						
ITSM	Non repetitive surge peak on-state	t= 1s	0						
	current (sinusoidal)	8	A						

Electrical Parameter							
Symbol	Parameter						
V_{RM}	Stand-off voltage	I+					
V_{BR}	Breakdown voltage	I _{pp} /					
V_{BO}	Breakover voltage						
I_{RM}	Leakage current	I _{BO}					
I_{PP}	Peak pulse current	I _{RM}					
I_{BO}	Breakover current	V _{RM} V _{BR} V _{BO}					
I_{H}	Holding current						
V_R	Continuous reverse voltage						
I _R	Leakage current at V _R						
C0	Capacitance						


Electrical Characteristics											
	VRM	IRM	VBO	IBO	VT	ľΤ	Co	IH			
Part Numbers	Min.		Max.	Max.	Max.		Max	Min.			
	V	Ua	V	m A	V	A	pF	m A			
TSP0080SB	6	2	15	800	2	1	80	50			
TSP2600SB	220	2	300	800	2.2	1	60	150			
TSP3500SB	320	5	400	800	2.2	1	25	150			
TSP4200SB	390	5	500	800	2.2	1	25	150			

Surface Mount

Thyristor Surge Protective Devices

■Characteristics Curves

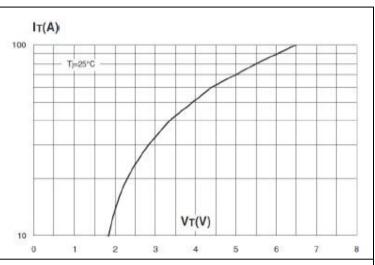
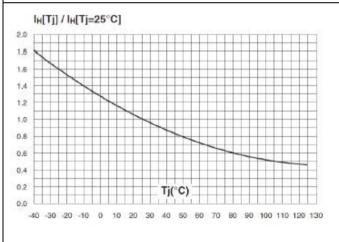



FIG.1- NON-REPETITIVE SURGE PEAK ON-STATE CURRENT VERSUS OVERLOAD DURATION

FIG.2- ON-STATE CURRENT VERSUS ON-STATE CURRENT(TYPICAL VALUES)

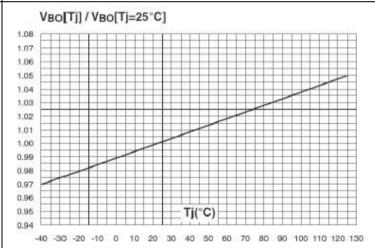
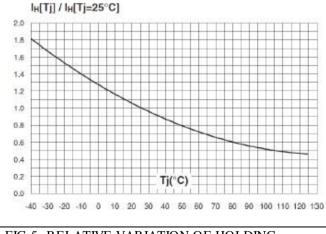



FIG.3- RELATIVE VARIATION OF HOLDING CURRENT VERSUS JUNCTION TEMPERATURE

FIG.4- RELATIVE VARIATION OF BREAK OVER VOLTAGE VERSUS JUNCTION TEMPERATURE

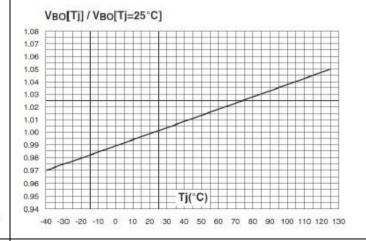
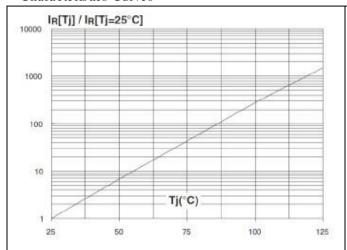


FIG.5- RELATIVE VARIATION OF HOLDING CURRENT VERSUS JUNCTION TEMPERATURE


FIG.4- RELATIVE VARIATION OF BREAK OVER VOLTAGE VERSUS JUNCTION TEMPERATURE

Surface Mount

Thyristor Surge Protective Devices

■Characteristics Curves

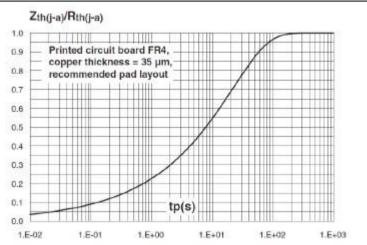


FIG.7- RELATIVE VARIATION OF LEAKAGE CURRENT VERSUS REVERSE VOLTAGE APPLIED(TYPICAL VALUSE)

FIG.8- VARIATION OF THERMAL IMPEDANCE JUNCTION TO AMBIENT VERSUS PULSE DURATION

Surface Mount

Thyristor Surge Protective Devices

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.