

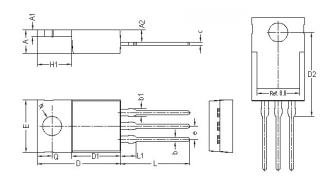
N-Channel 600-V (D-S) MOSFET

Description

The device is using advanced Super-Junction technology. This advanced technology has been especially tailored to minimize conduction loss, provide superior switching performance and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for AC/DC power conversion in switching mode operation for higher efficiency.

Graphic Symbol

Features


- 20A, 600V, $R_{DS(ON)typ} = 0.16\Omega@V_{GS} = 10V$
- Low Gate Charge (typical 39nC)
- High Ruggedness
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability

•

Typical Applications

- Switching Mode Power Supply
- Adapter / Charger
- Server Power

Package Dimension

	Millimeter		ı	Millimenton		
REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	11.	Min.	Max.	
Α	4.30	4.70	D2	15.70	17.00	
A1	1.20	1.40	Е	9.70	10.36	
A2	2.30	2.79	е	2.54 BSC		
b	0.70	0.90	H1	6.10	6.70	
b1	1.20	1.75	L	12.80	13.90	
С	0.34	0.60	L1	-	4.00	
D	14.70	16.10	Q	2.60	3.00	
D1	8.60	9.30	Ø	3.55	3.95	

Package type: TO-220

RoHS Compliant

N-Channel 600-V (D-S) MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings					
Symbol	Parameter	Value	Units		
V_{DS}	Drain-Source Voltage	600	V		
V _G S	Gate-Source Voltage	±30	V		
ID	Continuous Drain Current¹ (T _C =25°C)	20	Α		
	Continuous Drain Current ¹ (T _C =100°C)	12	Α		
I _{DM}	Pulsed Drain Current ^{1,2}	80	Α		
I _{AS}	Single Pulse Avalanche Current, L =79mH³	4.2	Α		
Eas	Single Pulse Avalanche Energy, L =79mH³	835	mJ		
dv/dt	Peak Diode Recovery dv/dt	15	V/ns		
D	Power Dissipation ⁴ (T _C =25°C)	150	W		
P _D	Derating Factor Above 25°C	1.2	W/°C		
TJ/TsTG	Operating Junction and Storage Temperature	-55 to +150	°C		

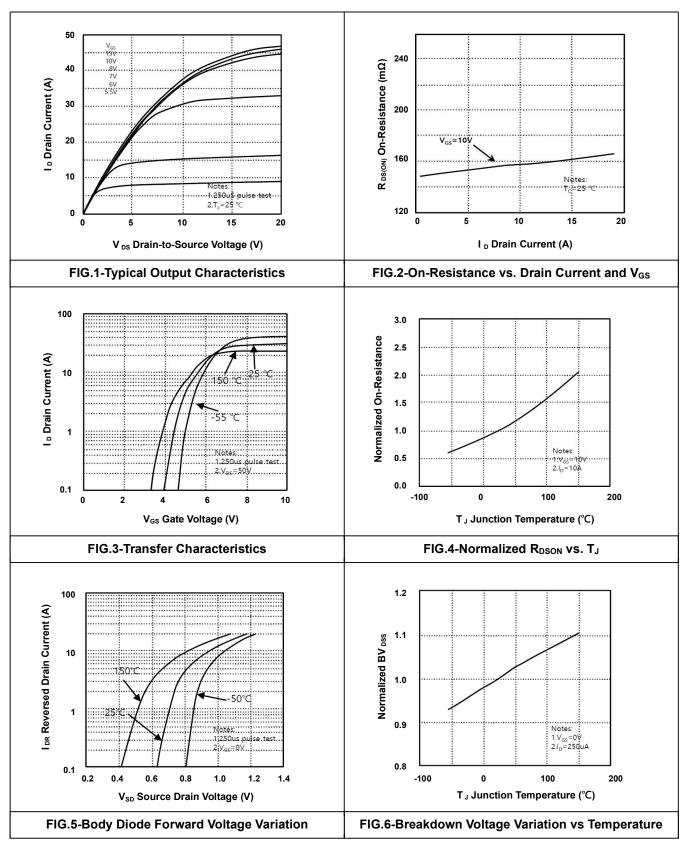
Thermal Resistance Ratings					
Symbol	Parameter	Maximum	Units		
$R_{\theta JA}$	Maximum Junction-to-Ambient ¹	62.5	°C/W		
Rejc	Maximum Junction-to-Case ¹	0.83	°C/W		

Electrical Characteristics (T _J =25°C unless otherwise specified)						
Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Units
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250μA	2.0	_	4.0	V
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	600	-	-	V
BV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C	-	0.56	-	V/°C
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±30V	-	-	±100	nA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =600V, V _{GS} =0V, T _C =25°C V _{DS} =480V, V _{GS} =0V, T _C =125°C	-	-	1 10	μA
R _{DS} (on)	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =10A	-	0.16	0.19	Ω
Rg	Gate Resistance	V _{GS} =V _{DS} =0V, f =1.0MHz	-	2.6	-	Ω

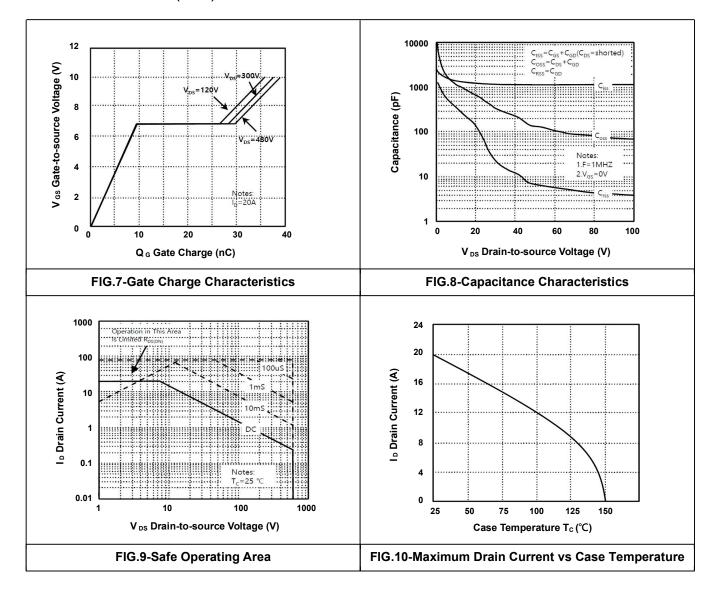
N-Channel 600-V (D-S) MOSFET

Dynamic						
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Qg	Total Gate Charge ²	V _{DS} =480V		39		
Qgs	Gate-Source Charge	I _D =20A		9.6		nC
Qgd	Gate-Drain Charge	V _{GS} =10V		20		
td(on)	Turn-On Delay Time ²	V _{DS} =300V		20		
tr	Rise Time	I _D =20A		60		
td(off)	Turn-Off Delay Time	V _{GS} =10V		105		ns
tf	Fall Time	$R_G = 25\Omega$		42		
Ciss	Input Capacitance	V _{DS} =100V		1174		
Coss	Output Capacitance	V _{GS} =0V		67		pF
Crss	Reverse Transfer Capacitance	f =1.0MHz		4.0		

Source-Drain Diode							
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Is	Continuous Source Current ^{1,5}	V V OV F O	-	-	20		
I _{SM}	Pulsed Source Current ^{2,5}	V _G =V _D =0V, Force Current	-	-	80	Α	
V _{SD}	Diode Forward Voltage ²	I _S =20A, V _{GS} =0V, T _J =25°C	-	-	1.2	V	
t _{rr}	Reverse Recovery Time ²	I _S =20A, V _{GS} =0V, dI _F / dt =		426		ns	
Qrr	Reverse Recovery Charge ²	100A/µs		6.2		μC	


Notes

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 3. The EAS data shows maximum rating. The test condition is V_{DD} =100V, L=79mH, I_{AS}=4.6A.
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.


N-Channel 600-V (D-S) MOSFET

• Typical Electrical Characteristics

N-Channel 600-V (D-S) MOSFET

N-Channel 600-V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.