

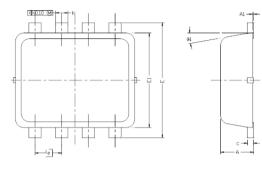
N-Channel 30-V (D-S) MOSFET

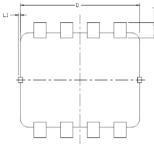
Description

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low RDS(on) and to ensure minimal power loss and heat dissipation.

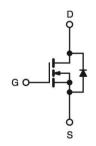
Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, and PCMCIA cards, cellular and cordless telephones.

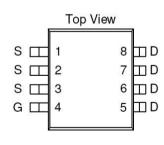
- Low rDS(on) provides higher efficiency and extends battery life
- Low thermal impedance copper lead frame DFN3x3 saves board space
- Fast switching speed
- High performance trench technology
- RoHS compliant package


Package type: DFN 3X3


Packing & Order Information

3,000/Reel





DIM.	MILLIMETERS			INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.700	0.800	0.900	0.028	0.0315	0.0354	
A1	0.000	-	0.050	0.000	-	0.002	
b	0.240	0.300	0.350	0.009	0.012	0.014	
С	0.080	0.152	0.250	0.003	0.006	0.010	
DIM.	2.90 BSC			0.114 BSC			
Е	2.80 BSC 0.110 BSC				C		
E1	2.30 BSC			0.091 BSC			
е	0.65 BSC			0.026 BSC			
L	0.200	0.375	0.450	0.008	0.0148	0.0177	
L1	0.000	-	0.100	0.000	-	0.004	
θ1	0.000	10.000	12.000	0.000	10.000	12.000	

Graphic symbol

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (T _A =25°C Unless Otherwise Noted)				
Symbol	Parameter	Value	Unit	
V_{DS}	Drain-Source Voltage	30	V	
V _{GS}	Gate-Source Voltage	±20	V	
T_	Drain Current -Continuous a (T _A =25 °C)	±19	A	
I_D	Drain Current -Continuous a (T _A = 70 °C)	±16	A	
I_{DM}	Pulsed Drain Current ^b	±40	A	
P_D	Total Power Dissipation ^a (T _A =25°C)	3.5	W	
	Total Power Dissipation ^a (T _A =70°C)	2	W	

N-Channel 30-V (D-S) MOSFET

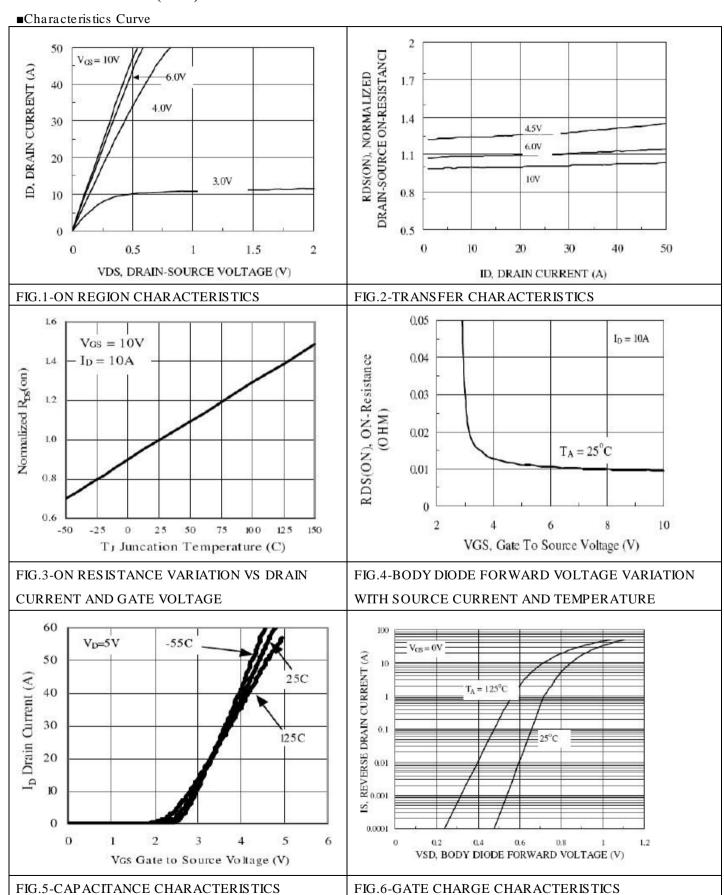
Absolute Maximum Ratings (T _A =25°C Unless Otherwise Noted)					
Symbol	Parameter	Value	Unit		
Is	Continuous Source Current (Diode Conduction) ^a	2	A		
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C		

Thermal Data					
Symbol	Parameter Max.				
$R_{\theta JC}$	aximum Junction-to-Case ^a (t<=5 sec) 35		°C/W		
$R_{\theta JA}$	Maximum Junction-to- Ambient ^a (t<=5 sec) 50		C/W		

Note:

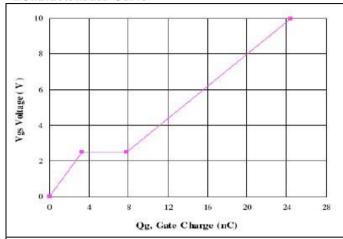
- 1. Surface Mounted on 1"x1" FR4 Board.
- 2. Pulse width limited by maximum junction temperature.

Static					
Symbol	Test Conditions	Min	Тур.	Max.	Units
V_{SD}	$V_{GS} = 0 \text{ V}$, $I_S = 2.3 \text{ A}$		0.7		V
V _{GS(th)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1		3	V
IDSS	$V_{DS} = 24 \ V$, $V_{GS} = 0 \ V$ $V_{DS} = 24 \ V$, $V_{GS} = 0 \ V$, $T_{j=} 55^{\circ}C$			1 25	uA
Igss	$V_{GS}=20\ V\ ,\ V_{DS}=0$			±100	nA
I _{D(ON)}	$V_{DS} = 5 V$, $V_{GS} = 10 V$	20			A
R _{DS} (ON)	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 8 \text{ A}$			6.9 9.8	mΩ
G _{FS} *1	V _{DS} = 15 V,I _D = 10 A		40		S


Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
C_{ISS}	Input Capacitance			1302		pF
Coss	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		423		pF
C_{RSS}	Reverse Transfer Capacitance	1 – 1.0WHZ		171		pF
Q_g	Total Gate Charge	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ A},$ $V_{GS} = 4.5 \text{ V}$		11		nC
Q_{gs}	Gate-Source Charge			6		nC
$Q_{\rm gd}$	Gate-Drain Charge			4		nC
$t_{d(on)}$	Turn-On Dalay Time	$V_{DD} = 25 \text{ V}, \ I_D = 1 \text{ A},$ $R_L = 25 \ \Omega, \ V_{GEN} = 10 \text{ V}$		10		ns
t _r	Rise Time			5		ns
$t_{ m d(off)}$	Turn-Off Dalay Time			22		ns
tf	Fall Time			4		ns

Notes

- a. Pulse test: PW \leq 300us duty cycle \leq 2%.
- b. Guaranteed by design, not subject to production testing.


N-Channel 30-V (D-S) MOSFET

N-Channel 30-V (D-S) MOSFET

■Characteristics Curve

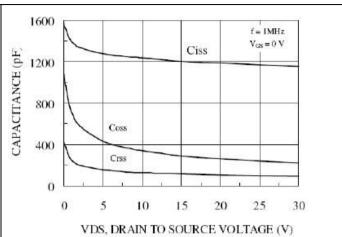


FIG.7-BREAKDOWN VOLTAGE VARIATION VS TEMPERATURE

2.4
2.2
1.8
1.6
1.4
1.2
1.50 -25 0 25 50 75 100 125 150 175

TA, AMBIENT TEMPERATURE (°C)

FIG.8-ON-RESISTANCE VARIATION VS TEMPERATURE

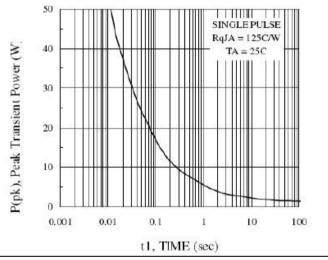
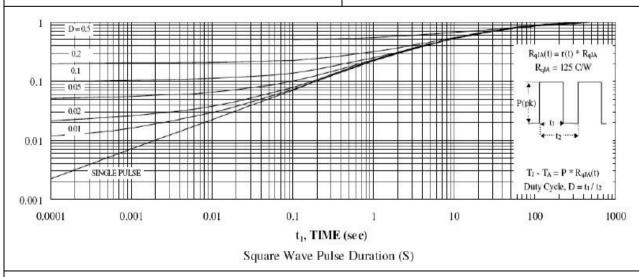



FIG.9-MAXIMUM SAFE OPERATING AREA

 $\label{eq:fig.10-maximum} \textbf{FIG.10-MAXIMUM DRAIN CURRENT VS CASE} \\ \textbf{TEMPERATURE}$

N-Channel 30-V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.