

N-Channel 100-V (D-S) MOSFET

Description

The device is using trench DMOS technology. This advanced technology has been especially tailored to minimize R_{DS(ON)}, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

The device meets the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

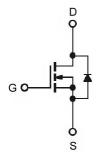
Features

- R_{DS(ON)} =11.0mΩ@ V_{GS} =10V
- Fast switching
- Improve dv/dt Capability
- 100% EAS Guaranteed
- Green Device Available

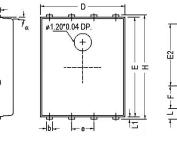
Typical Applications

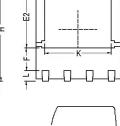
- Networking
- Load Switch
- Synchronous Rectifier
- Quick Charger

Package type : PDFN 5X6


Packing & Order Information

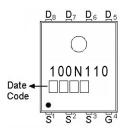
3,000/Reel




RoHS Compliant

Graphic Symbol

Package Dimension



DETAIL "A" (3X:1)

REF.	Millimeter		REF.	Millimeter			
	Min.	Nom.	Max.	REF.	Min.	Nom.	Max.
Α	0.85	1.00	1.15	E	5.70	-	5.90
A1	0.00	-	0.10	е	-	1.27	-
b	0.30	-	0.51	Н	5.90	-	6.20
С	0.20	-	0.30	L	-	0.60	-
D	4.80	-	5.00	L1	0.06	-	0.20
F	1.10 Ref.		α	0°	-	12°	
E2	3	3.50 Ref.		K	3.70	3.90	4.10

Marking

N-Channel 100-V (D-S) MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings				
Symbol	Parameter	Value	Units	
Vds	Drain-Source Voltage	100	V	
V _{GS}	Gate-Source Voltage	+20/-12	V	
	Continuous Drain Current ¹ ($T_c = 25^{\circ}C$)	55	A	
lD	Continuous Drain Current ¹ (T _c =100°C)	32	A	
IDM	Pulsed Drain Current ^{1,2}	200	А	
las	Single Pulse Avalanche Current, L =0.1mH ³	62	А	
Eas	Single Pulse Avalanche Energy, L =0.1mH ³	192	mJ	
D	Power Dissipation ⁴ ($T_c = 25^{\circ}C$)	62.5	W	
PD	Power Dissipation ⁴ (T _A =25°C)	2	W	
TJ/Tstg	Operating Junction and Storage Temperature	-50 to +150	°C	

Thermal Resistance Ratings						
Symbol	Parameter	Maximum	Units			
Reja	Maximum Junction-to-Ambient ¹	60	°C/W			
Rejc	Maximum Junction-to-Case ¹	2	°C/W			

Electrical Characteristics (TJ=25°C unless otherwise specified)						
Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0	2.9	4.0	V	
Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	100	-	-	V	
Forward Transconductance	V _{DS} =10V, I _D =3A	-	10	-	S	
Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =20V	-	-	100	nA	
Drain-Source Leakage Current	$V_{DS} = 100V, V_{GS} = 0V, T_J = 25^{\circ}C$		-	1	μA	
	V _{DS} =80V, V _{GS} =0V, T _J =85°C	-		10		
Static Drain-Source On-Resistance ²	$V_{GS} = 10V, I_D = 20A$	-	9.2	11	mΩ	
Single Pulse Avalanche Energy ⁵	V _{DD} =50V, L =0.1mH, I _{AS} =30A	45		-	mJ	
Diode Forward Voltage ²	Is =20A, V _{GS} =0V, T _J =25°C	-	-	1.2	V	
Continuous Source Current ^{1,6}		-	-	62		
Pulsed Source Current ^{2,6}	V _G =V _D =0V, Force Current	-	-	124	A	
	ParameterGate Threshold VoltageDrain-Source Breakdown VoltageForward TransconductanceGate-Source Leakage CurrentDrain-Source Leakage CurrentStatic Drain-Source On-Resistance²Single Pulse Avalanche Energy ⁵ Diode Forward Voltage²Continuous Source Current ^{1,6}	ParameterTest ConditionsGate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 250 \mu A$ Forward Transconductance $V_{DS} = 10V$, $I_D = 3A$ Gate-Source Leakage Current $V_{DS} = 0V$, $V_{GS} = 20V$ Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ Static Drain-Source On-Resistance2 $V_{GS} = 10V$, $I_D = 20A$ Single Pulse Avalanche Energy5 $V_{DD} = 50V$, $L = 0.1mH$, $I_{AS} = 30A$ Diode Forward Voltage2 $I_S = 20A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ Continuous Source Current ^{1.6} $V_G = V_D = 0V$, Force Current	ParameterTest ConditionsMin.Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 2.0Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 250 \mu A$ 100Forward Transconductance $V_{DS} = 10V$, $I_D = 3A$ -Gate-Source Leakage Current $V_{DS} = 0V$, $V_{GS} = 20V$ -Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ -Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 85^{\circ}C$ -Static Drain-Source On-Resistance ² $V_{GS} = 10V$, $I_D = 20A$ -Single Pulse Avalanche Energy ⁵ $V_{DD} = 50V$, $L = 0.1mH$, $I_{AS} = 30A$ 45Diode Forward Voltage ² $I_S = 20A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ -Continuous Source Current ^{1.6} $V_{G} = V_D = 0V$, Force Current-	ParameterTest ConditionsMin.Typ.Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 2.02.9Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 250 \mu A$ 100-Forward Transconductance $V_{DS} = 10V$, $I_D = 3A$ -10Gate-Source Leakage Current $V_{DS} = 0V$, $V_{GS} = 20V$ Drain-Source Leakage Current $V_{DS} = 10V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 85^{\circ}C$ Static Drain-Source On-Resistance2 $V_{GS} = 10V$, $I_D = 20A$ -9.2Single Pulse Avalanche Energy5 $V_{DD} = 50V$, $L = 0.1mH$, $I_{AS} = 30A$ 45-Diode Forward Voltage2 $I_S = 20A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ $V_G = V_D = 0V$, Force Current	ParameterTest ConditionsMin.Typ.Max.Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 2.02.94.0Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 250 \mu A$ 100Forward Transconductance $V_{DS} = 10V$, $I_D = 3A$ -100-Gate-Source Leakage Current $V_{DS} = 0V$, $V_{GS} = 20V$ 100Drain-Source Leakage Current $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ -1 $V_{DS} = 100V$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ -1100Static Drain-Source On-Resistance ² $V_{GS} = 10V$, $I_D = 20A$ -9.211Single Pulse Avalanche Energy ⁵ $V_{DD} = 50V$, $L = 0.1mH$, $I_{AS} = 30A$ 45Diode Forward Voltage ² $I_S = 20A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ 1.2Continuous Source Current ^{1.6} $V_{G} = V_D = 0V$, Force Current62	

Notes

1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.

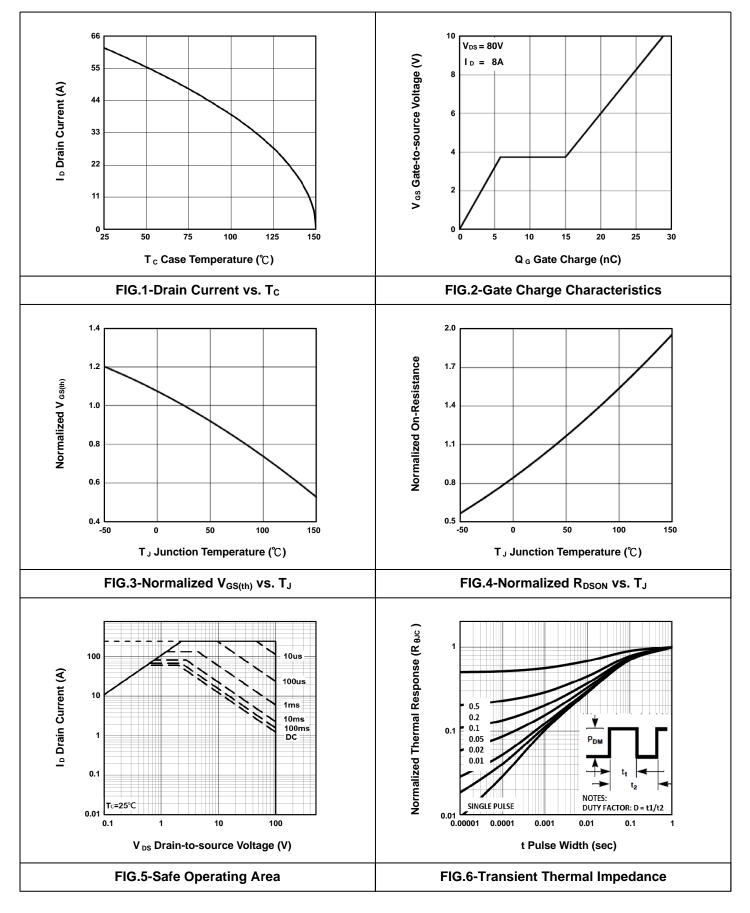
2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.

3. The EAS data shows maximum rating. The test condition is V_{DD} =50V, V_{GS} =10V, L=0.1mH, I_{AS}=62A.

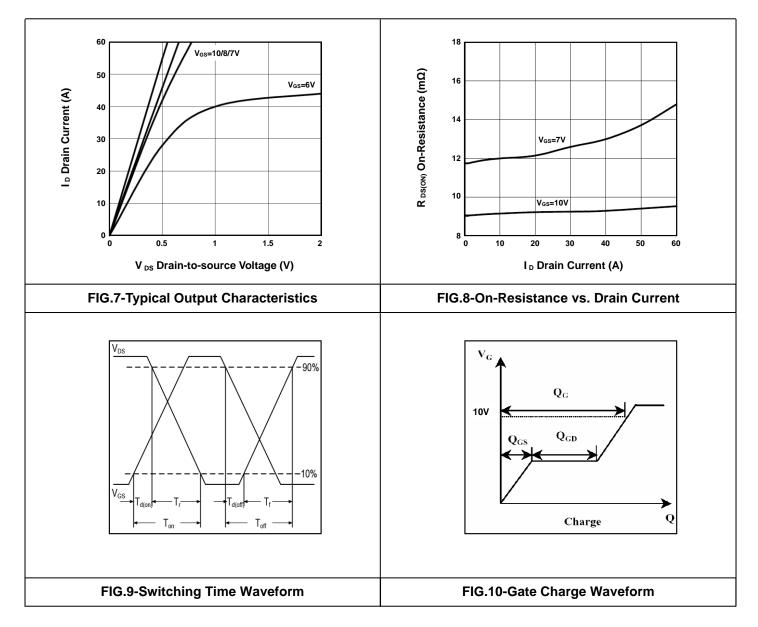
4. The power dissipation is limited by $150^\circ\!\mathrm{C}$ $\,$ junction temperature.

5. The Min. value is 100% EAS tested guarantee.

 $\label{eq:limit} 6. \quad \mbox{The data is theoretically the same as } I_D \mbox{ and } I_{DM}, \mbox{ in real applications, should be limited by total power dissipation.}$


N-Channel 100-V (D-S) MOSFET

Dynamic						
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Qg	Total Gate Charge ²	V _{DS} =80V		28.8		
Qgs	Gate-Source Charge	I _D =8A		5.8		nC
Qgd	Gate-Drain Charge	$V_{GS} = 10V$		9.2		
td(on)	Turn-On Delay Time ²	V _{DS} =50V		22		
tr	Rise Time	I _D =1A		18.7		
td(off)	Turn-Off Delay Time	V _{GS} =10V		42		ns
tf	Fall Time	R _G =6Ω		22		-
Ciss	Input Capacitance	V _{DS} =50V		1950		
Coss	Output Capacitance	V _{GS} =0V		665		pF
Crss	Reverse Transfer Capacitance	f =1.0MHz		33		1
Rg	Gate Resistance	V _{GS} =V _{DS} =0V, f =1.0MHz		1.4		Ω


N-Channel 100-V (D-S) MOSFET

• Typical Electrical Characteristics

N-Channel 100-V (D-S) MOSFET

N-Channel 100-V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.

(iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.