

N-Channel 500V MOSFET

Description

The MSF5N50 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The ITO-220AB package is universally preferred for all commercial-industrial applications

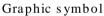
Features

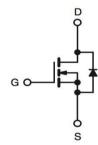
- Low On Resistance
- · Simple Drive Requirement
- · Low Gate Charge
- Fast Switching Characteristic
- RoHS compliant / Halogen free package available

Application (500V-600V)

- Open Framed Power Supply
- Adapter
- STB

Package type: ITO220-AB


Packing & Order Information


50/Tube; 1,000/Box

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings					
Symbol	Parameter	Value	Unit		
V_{DSS}	Drain-Source Voltage	500	V		
V_{GS}	Gate-Source Voltage	±30	V		
I_D	Continuous Drain Current (@ TC=25°C)	4.5	A		
	Continuous Drain Current (@ TC=100°C)	2.9	A		
I_{DM}	Pulsed Drain Current	18	A		
I _{AR}	Avalanche Current	4.5	A		
Eas	Single Pulsed Avalanche Energy	270	mJ		
Ear	Repetitive Avalanche Energy	7.3	mJ		
dv/dt	Peak Diode Recovery dv/dt	5.5	V/ns		

N-Channel 500V MOSFET

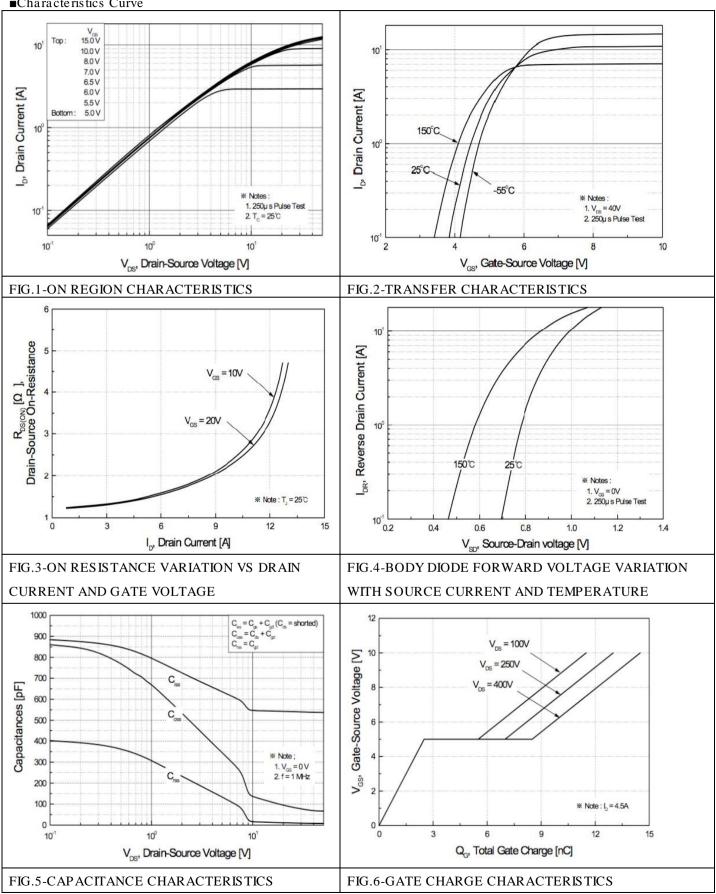
Absolute Maximum Ratings					
Symbol	Parameter	Value	Unit		
P_D	Power Dissipation (TC=25°C)	38	W		
	Power Dissipation (TC=100°C)	0.3	W/°C		
T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C		

NOTE:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} =4.5A, V_{DD} =50V, R_{G} =25 Ω , Starting TJ =25 $^{\circ}$ C
- 3. I_{SD} ≤4.5A, di/dt≤300A/ μ s, VDD≤BVDSS , Starting TJ =25 °C
- 4. Pulse Test : Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 5. Essentially Independent of Operating Temperature

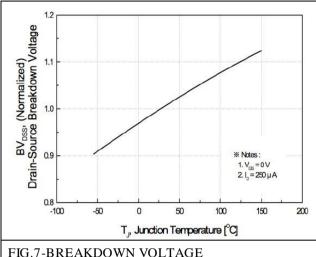
Static Characte	eris tic s				
Symbol	Test Conditions	Min	Тур.	Max.	Units
$ m V_{GS}$	$V_{\mathrm{DS}} = V_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}} = 250 \mu A$	2.0		4.0	V
*R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A}$		1.2	1.5	mΩ
BV_{DSS}	$V_{GS}=0~V$, $I_D=250\mu A$	500			V
$\Delta BV_{DSS}/\Delta T_J$	$I_D = 250 \mu A$, Referenced to $25^{\circ} \mathrm{C}$		0.4		V/°C
I_{DSS}	$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$			10	uA
IDSS	$V_{DS} = 400 \text{ V}$, $V_{GS} = 0 \text{ V}$, $T_j = 125 ^{\circ}\text{C}$			100	
I_{GSSF}	$V_{DS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I_{GSSR}	$V_{DS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA

Dynamic Characteristics					
Symbol	Test Conditions	Min	Тур.	Max.	Units
Q_{g}	$V_{DS} = 400 \text{ V}, I_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		14	18	nC
Q_{gs}			2.5		nC
Q_{gd}			6		nC
$t_{d(on)}$			20	40	ns
$t_{\rm r}$	$V_{DS} = 250 \text{ V}, I_D = 2.5 \text{ A},$		25	50	ns
$t_{d(off)}$	$R_G = 25 \Omega$		45	90	ns
tf			25	50	ns
Ciss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{MHz}$		550	720	pF
Coss			80	105	pF
C_{RSS}			10	13	pF


N-Channel 500V MOSFET

Source-Drain Diode Characteristics					
Symbol	Test Conditions	Min	Тур.	Max.	Units
I_S				4.5	
I _{SM}				18	A
V_{SD}	$I_S = 4.5 A$, $V_{GS} = 0 V$			1.5	V
t_{rr}	1 45 A W 0 W 415/44-400A/w		250		ns
Qrr	$I_{S}=4.5~A$, $V_{GS}=0~V$, dIF/dt=100A/ μ s		2.2		uC

N-Channel 500V MOSFET


■Characteristics Curve

N-Channel 500V MOSFET

■Characteristics Curve

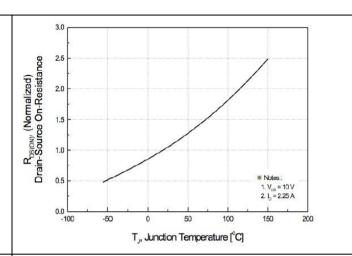


FIG.7-BREAKDOWN VOLTAGE VARIATION VS TEMPERATURE

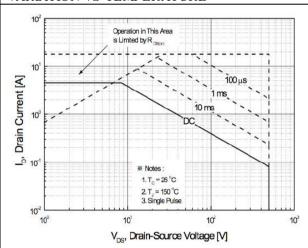


FIG.8-ON-RESISTANCE VARIATION VS TEMPERATURE

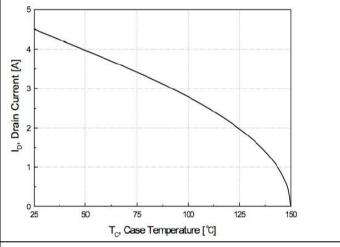


FIG.9-MAXIMUM SAFE OPERATING AREA

 $\begin{aligned} & \textbf{FIG.10-MAXIMUM DRAIN CURRENT VS CASE} \\ & \textbf{TEMPERATURE} \end{aligned}$

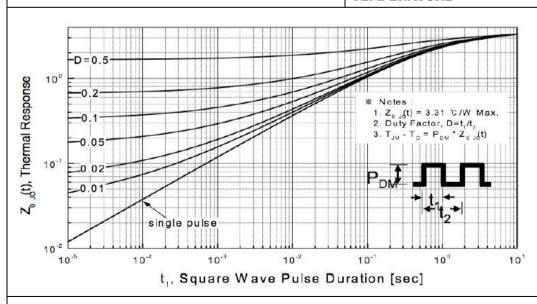


FIG.11-TRANSIENT THERMAL RESPONSE CURVE

N-Channel 500V MOSFET

■Characteristics Test Circuit & Waveform

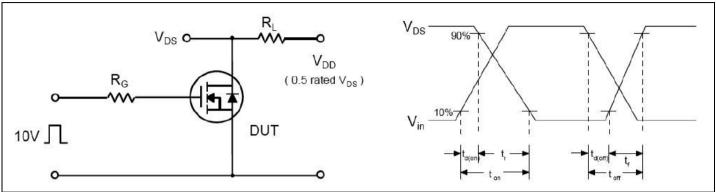


Fig 12. Resistive Switching Test Circuit & Waveforms

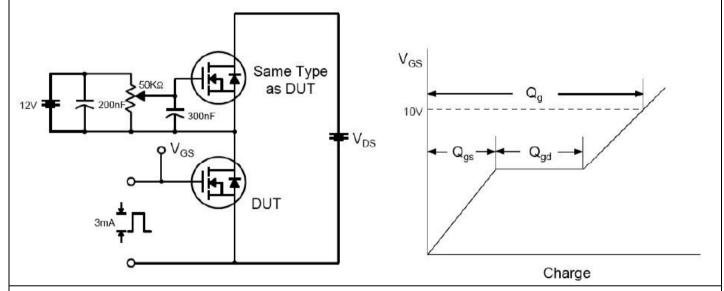


Fig 13. Gate Charge Test Circuit & Waveform

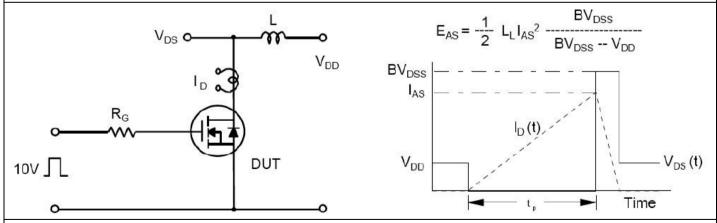


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

N-Channel 500V MOSFET

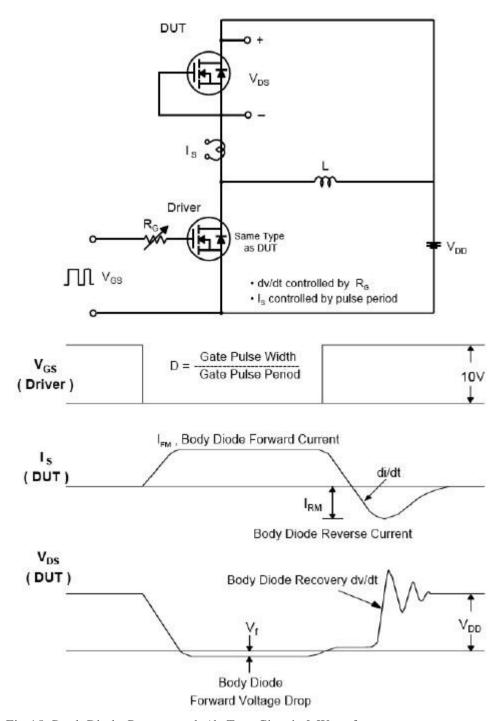


Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

N-Channel 500V MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.