

600V N-Channel MOSFET

Description

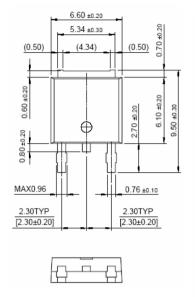
The MSD4N60 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-252 package is universally preferred for all commercial-industrial applications

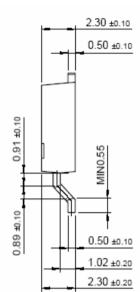
Features

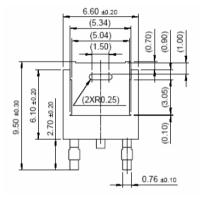
- · Low On Resistance
- Simple Drive Requirement
- · Low Gate Charge
- Fast Switching Characteristic
- RoHS compliant package

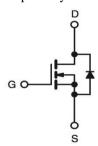
Application

- · Low power battery chargers
- Switch mode power supply (SMPS)
- DC-AC converters.


Packing & Order Information


Part No./ R: 2,500/Reel


Part No./ T: 80/Tube, 4,000/Box



Graphic symbol

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)						
Symbol	Parameter	Value	Unit			
V_{DSS}	Drain-Source Voltage	600	V			
V_{GS}	Gate-Source Voltage	±30	V			
I_D	Continuous Drain Current (TC=25°C)	4.5	A			
	Continuous Drain Current (T _C =100°C)	2.6	A			
I_{DM}	Pulsed Drain Current	18	A			

600V N-Channel MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)					
Symbol	Parameter	Value	Unit		
EAS	Single Pulsed Avalanche Energy	33	mJ		
I _{AR}	Avalanche Current	4.0	A		
EAR	Repetitive Avalanche Energy	10	mJ		
dV/dt	Peak Diode Recovery dV/dt	4.5	V/ns		
P_D	Power Dissipation (T _C =25°C)	31	W		
	Derating Factor above 25 °C	0.25	W		
Тл	Storage Temperature	150	°C		
T_{L}	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C		

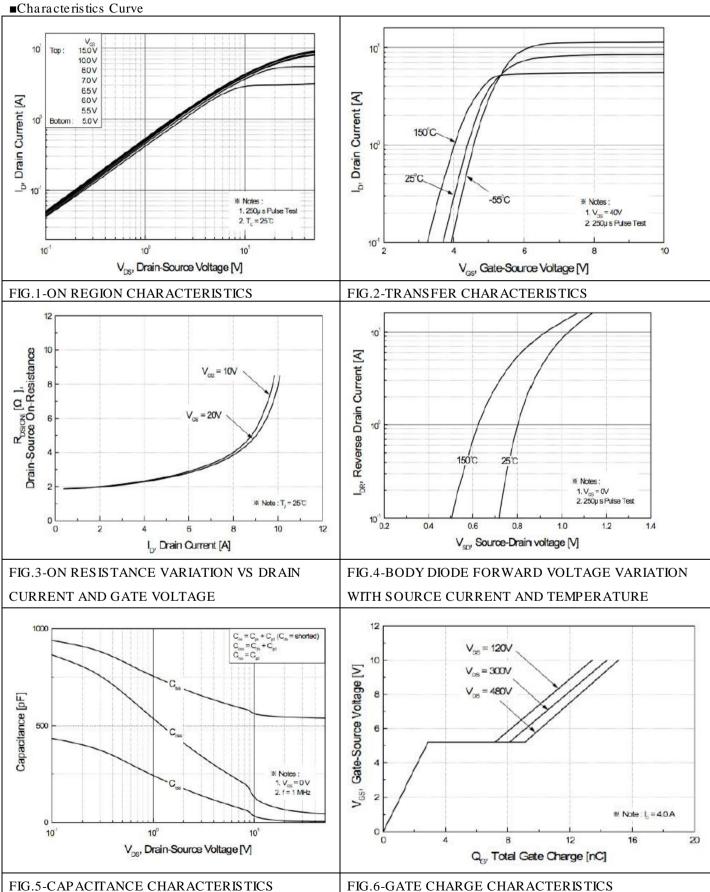
Note:

- 1. Repetitive rating; pulse width limited by maximum junction temperature.
- 2. I_{AS} =4A, V_{DD} =50V, L=8mH, V_{G} =10V, starting TJ=+25°C.
- 3. I_{SD}≤4A, dI/dt≤100A/µs, VDD≤BVDSS, starting TJ=+25°C.

Thermal Resistance Characteristics (Tc=25°C unless otherwise noted)							
Symbol	Do no motor	Value			T I		
	Parameter	Min.	Typ.	Max.	Units		
Rөлс	Thermal Resistance, Junction-to-Case			2.8	0C/W		
R _{θJ A}	Thermal Resistance, Junction-to- Ambient			50	°C/W		

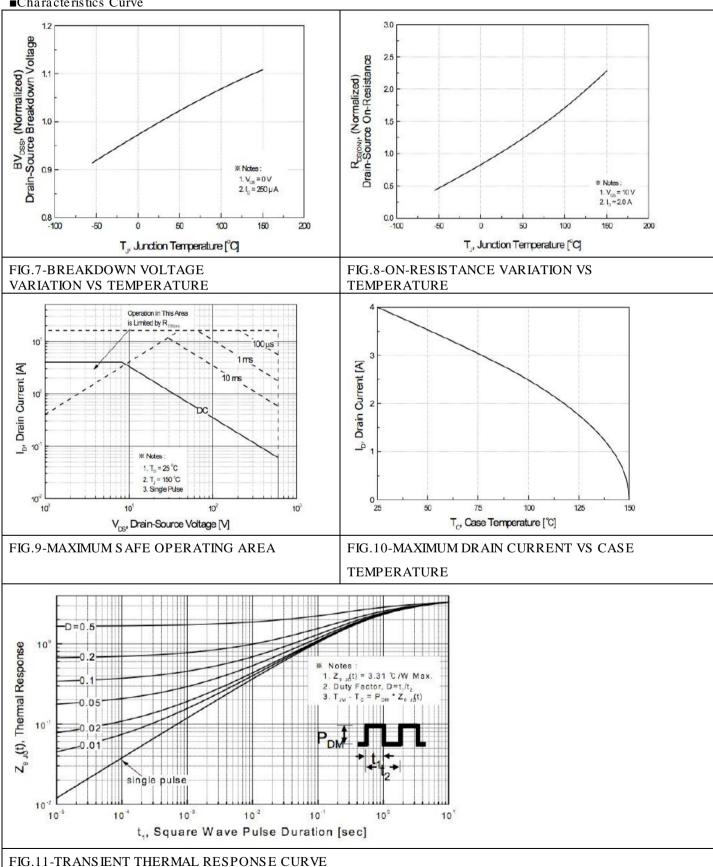
Off Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0~V$, $I_D\text{=}250\mu\text{A}$	600			V
ΔBV_{DSS} $/\Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25 $^{\circ}$ C		0.60		V/°C
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}\;,\;I_D\!=250\mu A$	2.0		4.0	V
IDSS	Drain-Source Leakage Current	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, T_C = 125 ^{\circ}\text{C}$			1 10	uA
Igss	Gate-Body Leakage Forward	$V_{GS} = \pm 30$			±100	nA
$R_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}$, $I_D = 2.25 \text{ A}$		2.0	2.5	Ω

600V N-Channel MOSFET


Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
C_{ISS}	Input Capacitance			560		pF
Coss	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ F = 1.0 MHz		55		pF
C_{RSS}	Reverse Transfer Capacitance	$\Gamma = 1.0$ WIFIZ		7		pF
$t_{d(on)}$	Turn-On Time			10	30	ns
$t_{\rm r}$	Turn-On Time	$V_{DD} = 300 \text{ V, } I_D = 4.5 \text{ A,}$ $R_G = 25 \Omega \text{ , } V_{GS} = 10 \text{ V}$		40	80	ns
$t_{d(\rm off)} \\$	Turn-Off Delay Time			40	100	ns
tf	Turn-Off Fall Time			50	90	ns
Qg	Total Gate Charge			16		nC
Q_{gs}	Gate-Source Charge	$V_{DD} = 480 \text{ V}, I_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		2.5		nC
Q_{gd}	Gate-Drain Charge			6.5		nC

Source-Drain Diode						
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
Is		AD AG O			4.0	
I _{SM}		VD = VG = 0			16	A
V _{SD}		$I_S = 4.0 A$, $V_{GS} = 0 V$			1.4	V
t _{rr}		$I_F = 4.0 \text{ A}, V_{GS} = 0 \text{ V}$		270		ns
Qrr		$diF/dt = 100A/\mu s$		18		uC

^{*}Pulse Test : Pulse Width ≤300µs, Duty Cycle≤2%


600V N-Channel MOSFET

600V N-Channel MOSFET

■Characteristics Curve

600V N-Channel MOSFET

■Characteristics Test Circuit & Waveform

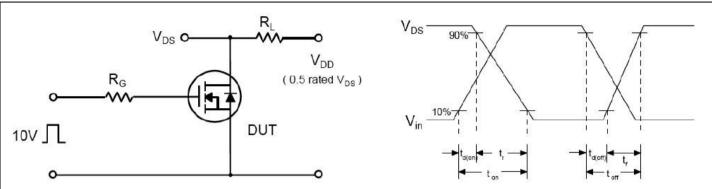


Fig 12. Resistive Switching Test Circuit & Waveforms

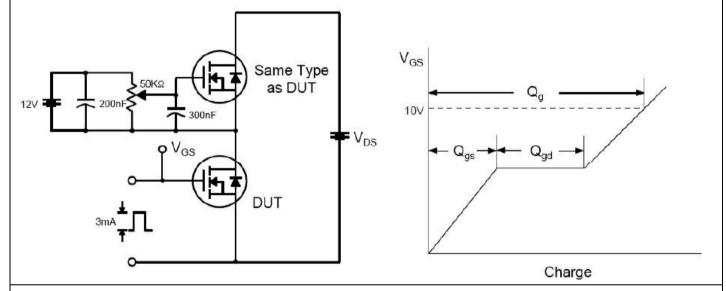


Fig 13. Gate Charge Test Circuit & Waveform

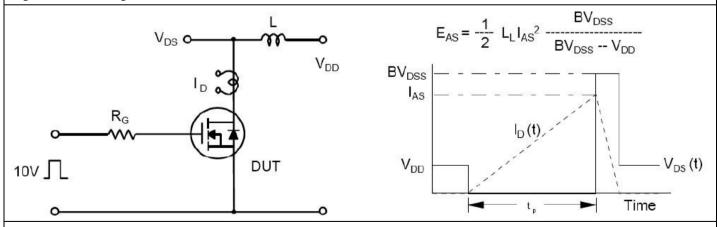


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

600V N-Channel MOSFET

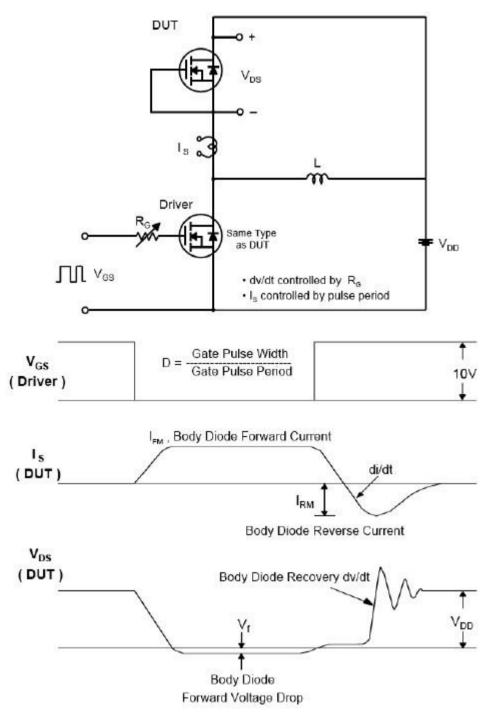


Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

600V N-Channel MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.