

N-Channel 30V MOSFETs

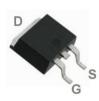
Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

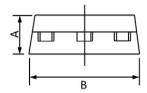
Features

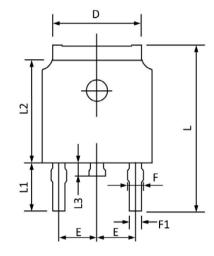
- 30V, 90A, RDS(ON) = $4m\Omega@VGS = 10V$
- Improved dv/dt capability
- Fast switching
- 100% EAS Guaranteed
- Green Device Available
- RoHS compliant package

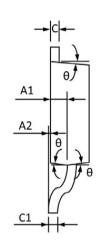
Applications

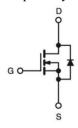

- MB / VGA / Vcore
- POL Applications
- SMPS 2nd SR

Package type: TO-252


Packing & Order information


R: 2,500/Reel


T: 80/Tube; 4,000/Box



Combal	Dimensions In	Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	2.20	2.40	0.087	0.094
A1	0.91	1.11	0.036	0.044
A2	0.00	0.15	0.000	0.006
В	6.50	6.70	0.256	0.264
C	0.46	0.580	0.018	0.230
C1	0.46	0.580	0.018	0.030
D	5.10	5.46	0.201	0.215
E	2.186	2.386	0.086	0.094
F	0.74	0.94	0.029	0.037
F1	0.660	0.860	0.026	0.034
L	9.80	10.40	0.386	0.409
L1	2.9REF		0.114	REF
L2	6.00	6.20	0.236	0.244
L3	0.60	1.00	0.024	0.039
θ	3°	9°	3°	9°

Graphic symbol

N-Channel 30V MOSFETs

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (T _A =25°C unless otherwise noted)						
Symbol	Parameter	Value	Unit			
V_{DS}	Drain-Source Voltage	30	V			
V_{GS}	Gate-Source Voltage	±20	V			
T_	Drain Current - Continuous (T _C =25°C)	90	A			
I_D	Drain Current - Continuous (T _C =100°C)	57	A			
I_{DM}	Drain Current - Pulsed ¹	360	A			
Eas	Single Pulse Avalanche Energy ²	125	mJ			
Ias	Single Pulse Avalanche Current ²	50	A			
D	Power Dissipation (T _C =25°C)	88	W			
P_D	Power Dissipation - Derate above 25°C	0.59	W/°C			
Тл	Storage Temperature Range	-55 to +175	°C			
Tstg	Operating Junction Temperature Range	-55 to +175	°C			

Thermal Characteristics						
Symbol	Parameter	Typ.	Max.	Units		
Rөлс	Thermal Resistance Junction to ambient		62	°CAN		
R _{θJA}	Thermal Resistance Junction to Case		1.7	°C/W		

Electrical Characteristics (TJ=25 °C, unless otherwise noted)

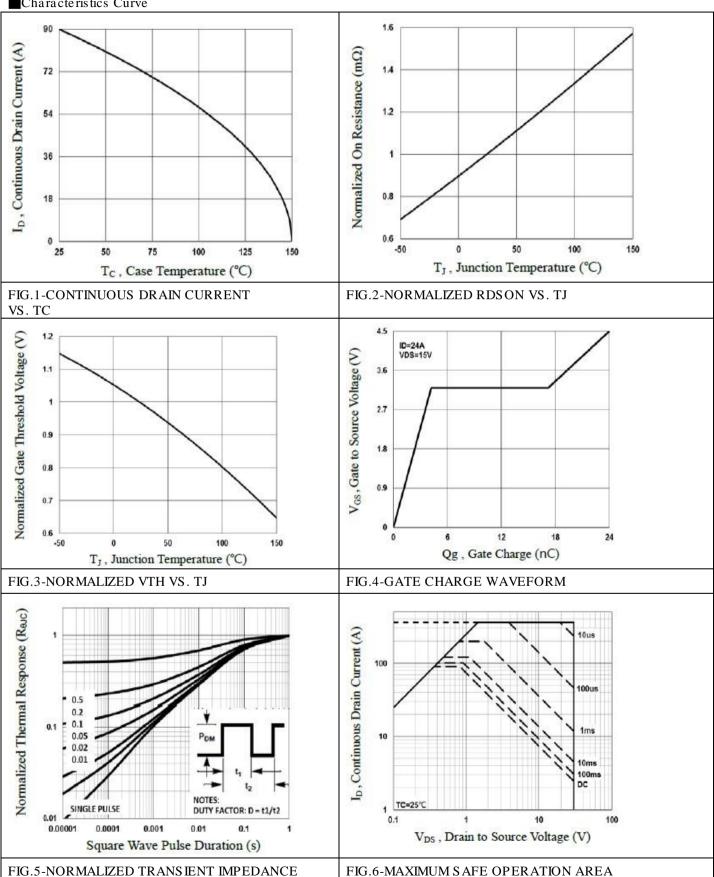
Static Sta	te Characteristics					
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = V_{GS}$, $I_D = 250 uA$	30			V
ΔBV_{DSS} $/\Delta TJ$	BV _{DSS} Temperature Coefficient	Reference to 25° C, $I_D = 1$ mA		0.03		V/°C
I _{GSS}	Gate-Source Leakage Current	$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 20 \text{ V}$			±100	nA
I_{DSS}	Drain-Source Leakage Current	$V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $T_{J} = 25 ^{\circ}\text{C}$ $V_{DS} = 24 \text{ V}$, $V_{GS} = 0 \text{ V}$, $T_{J} = 125 ^{\circ}\text{C}$			1 10	uA
R _{DS} (on)	Drain-Source On-Resistance ³	$V_{GS} = 10 \text{ V}, I_D = 24 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 12 \text{ A}$		3.1 4.5	4 6	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D \!=\! \text{-}250 \mu A$	1.2	1.6	2.5	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{DS} = V_{GS}, I_D \!=\! \text{-}250 \mu A$		-5		mV/°C
g fs	Forward Tranconductance	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A}$		15.5		S

Guarante	ed Avalanche Energy					
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
EAS	Single Pulse Avalanche Energy	$V_{DD} = 25 \text{ V}, L = 0.1 \text{Mh}, I_{AS} = 24 \text{ A}$	31			mJ

N-Channel 30V MOSFETs

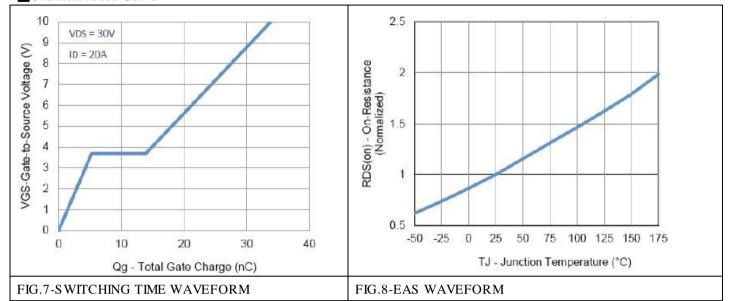
Dynamic :	Dynamic and switching Characteristics							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units		
Q_g	Total Gate Charge ^{3,4}			24	36	nC		
Q_{gs}	Gate-Source Charge ^{3,4}	$V_{DS} = 15 \text{ V}, I_D = 24 \text{ A},$ $V_{GS} = 4.5 \text{ V}$		4.2	8	nC		
Q_{gd}	Gate-Drain Charge 3,4	VGS - 4.5 V		13	20	nC		
$t_{d(on)}$	Turn-On Delay Time ^{3,4}	$I_D = 15 \text{ A}, R_G = 3.3 \Omega,$ $V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V}$		12.6	24	ns		
$t_{\rm r}$	Rise Time ^{3,4}			19.5	37	ns		
$t_{\rm d(off)}$	Turn-Off Delay Time ^{3,4}			42.8	81	ns		
tf	Fall Time ^{3,4}			13.2	25	ns		
C _{ISS}	Input Capacitance	$\begin{aligned} V_{DS} &= 15 \ V \\ f &= 1 \ MHz \ , \ V_{GS} = 0 \ V \end{aligned}$		2200	3300	pF		
Coss	Output Capacitance			280	410	pF		
C _{RSS}	Reverse Transfer Capacitance			177	260	pF		
Rg	Total Gate Charge	$V_{DS} = 0 V$, $f = 1 MHz$, $V_{GS} = 0 V$		2	4	Ω		

Drain-Sou	Drain-Source Diode Characteristics and Maximum Ratings								
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units			
Is	Continuous Source Current	$V_G = V_D = 0 \ V$, Force Current			90	A			
I_{SM}	Pulsed Source Current				360	A			
V _{SD}	Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 1 A, TJ = 25^{\circ}C$			1	V			
trr	Reverse Recovery Time	$V_{DS} = 3 \text{ 0V, } I_S = 1 \text{ A,}$				ns			
Qrr	Reverse Recovery Charge	di/dt=100A/µs , TJ=25°C				nC			


Note:

- 1.Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2.VDD=25V,VGS=10V,L=0.1mH,IAS=50A.,RG=25 Ω ,Starting TJ=25 $^{\circ}$ C.
- 3.The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$.
- 4. Essentially independent of operating temperature.

N-Channel 30V MOSFETs


Characteristics Curve

N-Channel 30V MOSFETs

Characteristics Curve

N-Channel 30V MOSFETs

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.