

MS8N60

N-Channel Enhancement Mode Power MOSFET

Description

The MS8N60 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications

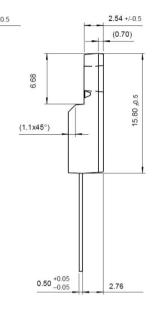
Features

- Low On Resistance
- Simple Drive Requirement
- Low Gate Charge
- Fast Switching Characteristic
- RoHS compliant package

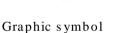
Application

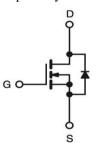
- Adapter
- Switching Mode Power Supply

Package type : TO-220AB


Packing & Order Information

50/Tube ; 1,000/Box





MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings						
Symbol	Parameter	Value	Unit			
V _{DSS}	Drain-Source Voltage	600	V			
V _{GS}	Gate-Source Voltage	±30	V			
ID	Drain Current -Continuous (TC=25°C)	7.5	А			
	Drain Current -Continuous (TC=100°C)	4.5	А			
I _{DM}	Drain Current Pulsed	30	А			
IAR	Avalanche Current	7.5	V			
E _{AS}	Single Pulsed Avalanche Energy	230	mJ			
E _{AR}	Repetitive Avalanche Energy	14.7	mJ			
dv/dt	Peak Diode Recovery dv/dt	4.5	V/ns			

· Drain current limited by maximum junction temperature

MS 8N60

N-Channel Enhancement Mode Power MOSFET

Absolute Maximum Ratings						
Symbol	Parameter	Value Unit				
т.	Maximum Temperature for Soldering @ Lead at 0.125	300	°C			
T_L	in(0.318mm) from case for 10 seconds	500	C			
P _D	Total Power Dissipation (@ TC = 25 °C) 44 W	147	W			
	Derating Factor above 25 °C	1.18	W/°C			
T _{STG}	Operating and Storage Temperature	-55 to +150	°C			
TJ	Storage Temperature	150	°C			

Note:

1.Repetitive rating; pulse width limited by maximum junction temperature.

2. $I_{AS} \leq 7.5 A$, $V_{DD} = 50 V$, L = 7.5 mH, $V_G = 10 V$, starting $TJ = +25 \degree C$.

3. I_{SD} ≤7.5A, dl/dt ≤200A/µs, VDD ≤BVDSS, starting TJ=+25°C.

Thermal Characteris tics						
Symbol	Parameter	Min.	Typ.	Max.	Units	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case			0.85	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient			62.5		

Static ChaStatic Characteristics						
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
DV	Drain-Source Breakdown	$V_{GS}=0~V$, $I_{D}=250\mu A$	600			V
BV _{DSS}	Voltage	Tj = 150 °C		650		V
ΔBV_{DSS}	Breakdown Voltage			0.65		V/°C
$/\Delta T_{\rm J}$	Temperature Coefficient	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		0.65		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	2.0		4.0	V
Idss	Drain-Source Leakage	$V_{DS} = 600 V$, $V_{GS} = 0 V$			1	uA
	Current	$V_{DS}=480~V$, $T_{C}=125^{\circ}C$			10	uA
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 30$			±100	nA
	Forward	VGS - ±30			100	
R _{DS(ON)}	Static Drain-Source	$V_{GS} = 10 \text{ V}$, $I_D = 3.75 \text{ V}$		1.08	1.2	Ω
	On-state Resistance	$v_{GS} = 10 v , 10 = 5.75 v$	1.08		1.2	52

MS 8N60

N-Channel Enhancement Mode Power MOSFET

Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
Q_{g}	Total Gate Charge			31.3		nC
Q_{gs}	Gate-Source Charge	$V_{DD} = 300 \text{ V}, \text{I}_D = 6 \text{ A},$ - $V_{GS} = 10 \text{ V}$		6.9		nC
Q_{gd}	Gate-Drain Charge (Miller Charge)	$\nabla GS = 10$ V		14		nC
C _{ISS}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1.0MHz		1482		pF
Coss	Output Capacitance			121.7		pF
C _{RSS}	Reverse Transfer Capacitance			14		pF
t _{d(on)}	Turn-On Time			14.2		ns
tr	Rise Time	$V_{DS} = 300 \text{ V}, I_D = 6 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 10 \Omega$		11.8		ns
$t_{d(off)}$	Turn-Off Delay Time			40.1		ns
tf	Fall Time			18.8		ns

Source-Drain Diode						
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
Is		$V_{\rm D} = V_{\rm G} = 0,$			7.5	•
I _{SM}		$V_S = 1.3 \ V$			30	A
V _{SD}		$I_S = 7.5 A, V_{GS} = 0 V$			1.5	v
trr		$I_F = 6 A, V_{GS} = 0 V$		504.9		ns
Qır		diF/dt=100A/µs		47.59		uC

*Pulse Test : Pulse Width ≤300µs, Duty Cycle≤2%

MS 8N60

N-Channel Enhancement Mode Power MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.

(iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.