

N-Channel 900V MOSFET

Description

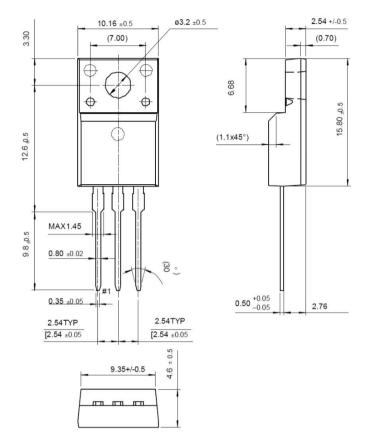
The MS6N90 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications

Features

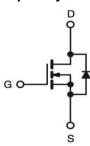
- RDS(on) (Max 2.4 Ω)@VGS=10V
- Gate Charge (Typical 33nC)
- Excellent Switching Characteristics
- Improved dv/dt Capability, High
- · Ruggedness
- 100% Avalanche Tested
- Maximum Junction Temperature
- Range (150°°C)
- RoHS compliant package

Application

- · Open Framed Power Supply
- Adapter


Package type: TO-220AB

Packing & Order Information


50/Tube; 1,000/Box

Graphic symbol

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)						
Symbol	Parameter	Value	Unit			
V_{DSS}	Drain-Source Voltage	900	V			
Τ_	Drain Current -Continuous (TC=25°C)	6	A			
$ m I_D$	Drain Current -Continuous (TC=100°C)	4.2	A			
I_{DM}	Drain Current -Pulsed	28	A			
V _{GS}	Gate-Source Voltage	±30	V			
Eas	Single Pulsed Avalanche Energy	580	mJ			
Ear	Repetitive Avalanche Energy	16.7	mJ			
dv/dt	Peak Diode Recovery dv/dt	4.5	V/ns			

Drain current limited by maximum junction temperature

N-Channel 900V MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)						
Symbol	Parameter Value Unit					
D	Power Dissipation (TC=25°C)	165	W			
P_D	- Derate above 25°C	1.4	W/°C			
$T_{\rm J}/T_{\rm STG}$	Operating and Storage Temperature Range	-55 to +150	°C			
$T_{\rm L}$	Maximum lead temperature for soldering purposes,	200	°C			
	1/8" from case for 5 seconds	300	°C			

•Drain current limited by maximum junction temperature

Thermal Resistance Characteristics							
Symbol	Parameter	Typ.	Max.	Units			
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W			
R _{θJA}	Junction-to-Ambient		62.5	C/W			

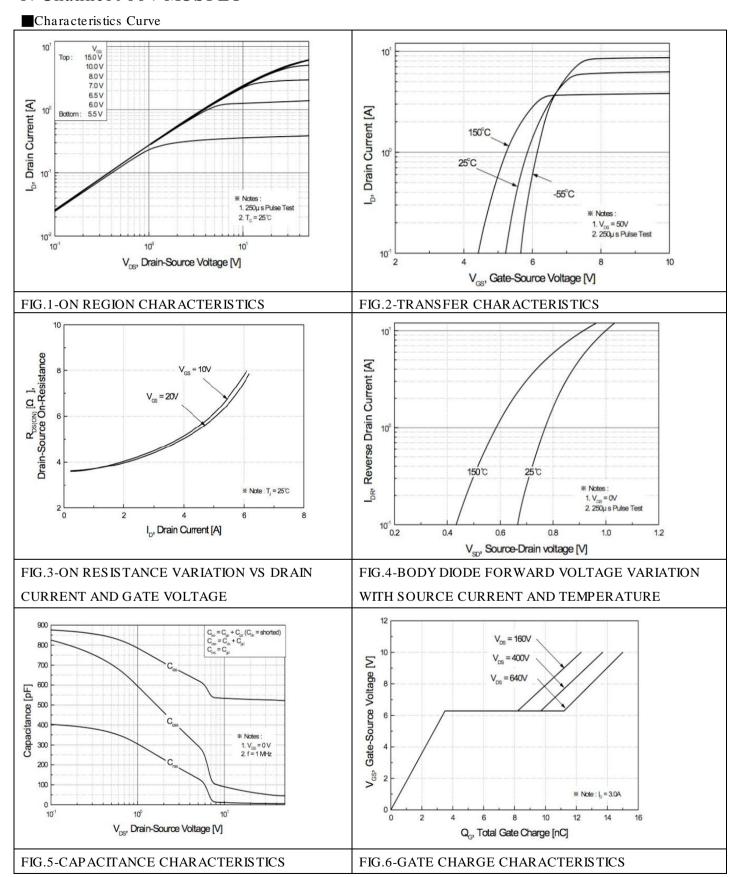
On Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
V_{GS}	Gate Threshold Voltage	$V_{DS}=V_{GS}, I_D=250\mu A$	3.0		5.0	V	
R _{DS} (ON)	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}$		1.95	2.4	Ω	

Off Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0~V~,~I_D\!=250\mu A$	900			V
ΔBV_{DSS} $/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25 $^{\circ}$ C		0.6		V/°C
I _{DS S}	Zero Gate Voltage Drain Current	$V_{DS} = 900 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 720 \text{ V}, V_{C} = 125 ^{\circ}\text{C}$			10 100	μA
I_{GSSF}	Gate-Body Leakage Current,Forward	$V_{GS} = 30 \text{ V}$, $V_{DS} = 0 \text{ V}$			100	nA
Igssr	Gate-Body Leakage Current,Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA

Dynamic Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
C_{ISS}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{MHz}$		1500		pF	
Coss	Coss Output Capacitance			120		pF	
C _{RSS}	Crss Reverse Transfer Capacitance			12		pF	

N-Channel 900V MOSFET

Switching Characteristics							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
$t_{d(on)}$	Turn-On Time	$V_{DS} = 450 \text{ V}, I_{D} = 6 \text{ A},$ $R_{G} = 25 \Omega$		50		ns	
t_r	Turn-On Rise Time			100		ns	
$t_{\rm d(off)}$	Turn-Off Delay Time			50		ns	
tf	Turn-Off Fall Time			60		ns	
Q_g	Total Gate Charge			33		nC	
Q_{gs}	Gate-Source Charge	$V_{DS} = 720 \text{ V}, I_{D} = 6 \text{ A},$ $V_{GS} = 10 \text{ V}$		10		nC	
Q_{gd}	Gate-Drain Charge	$V_{GS} = 10 \text{ V}$		13		nC	
trr	Reverse Recovery Time	$I_S=6~A~,~V_{GS}=0~V$ diF/dt =100A/ μs		0.65		ns	
Qrr	Reverse Recovery Charge			7.0		μC	


Source-Drain Diode Maximum Ratings and Characteristics						
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
Is	Continuous Source-Drain Diode Forward Current				6	
Ism	ISM Pulsed Source-Drain Diode Forward Current				24	A
V_{SD}	Source-Drain Diode Forward Voltage	$I_S = 6 A$, $V_{GS} = 0 V$			1.4	V

Notes:

- 1. Repeativity rating: pulse width limited by junction temperature
- 2. L = 34.0mH, I_{AS} =6.0A, V_{DD} = 50V, R_{G} = 25 Ω , Starting TJ = 25 $^{\circ}$ C
- 3. $I_{SD} \le 6.0A$, di/dt $\le 200A$ /us, VDD $\le BVDSS$, Starting TJ = 25°C
- 4. Pulse Test : Pulse Width ≤ 300us, Duty Cycle ≤ 2%
- 5. Essentially independent of operating temperature.

N-Channel 900V MOSFET

N-Channel 900V MOSFET

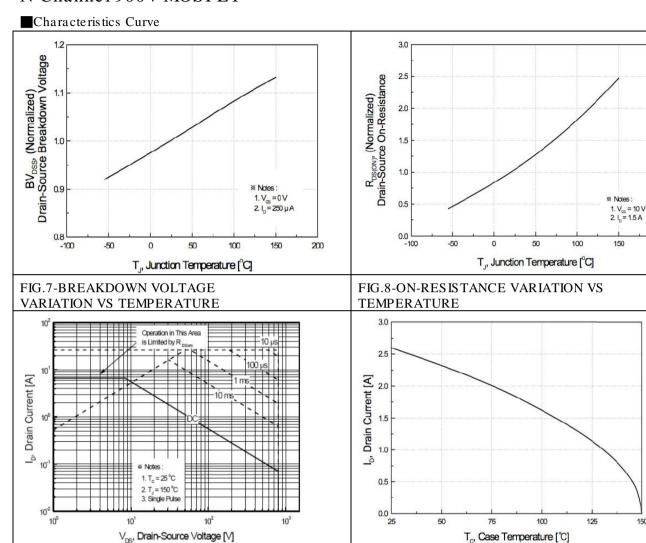


FIG.9-MAXIMUM SAFE OPERATING AREA

 $\begin{aligned} & \textbf{FIG.10-MAXIMUM DRAIN CURRENT VS CASE} \\ & \textbf{TEMPERATURE} \end{aligned}$

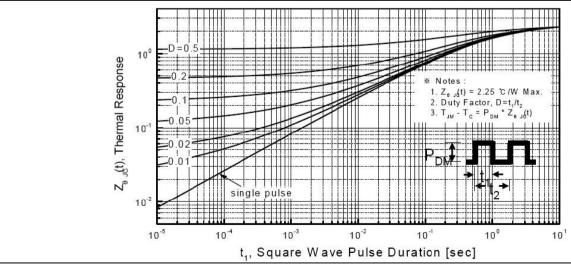


FIG.11-TRANSIENT THERMAL RESPONSE CURVE

200

N-Channel 900V MOSFET

Characteristics Test Circuit & Waveform

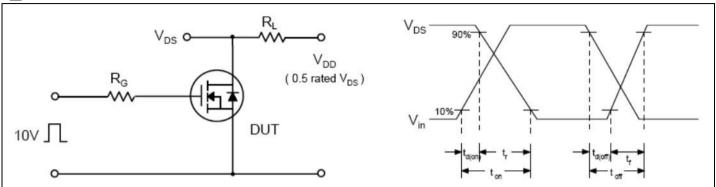


FIG.12-RESISTIVE SWITCHING TEST CIRCUIT & WAVEFORMS

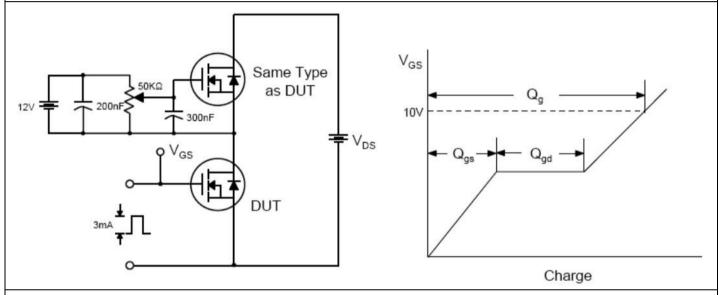


FIG.13-GATE CHARGE TEST CIRCUIT & WAVEFORM

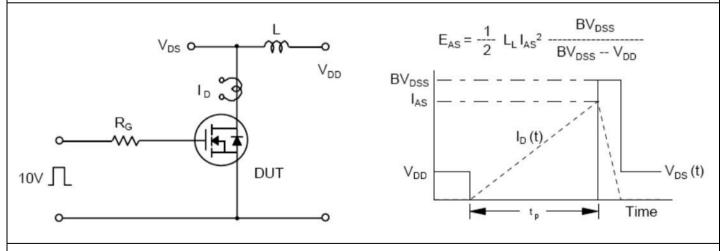


FIG.14-UNCLAMPED LINDUCTIVE SWITCHING TEST CIRCUIT & WAVEFORMS

N-Channel 900V MOSFET

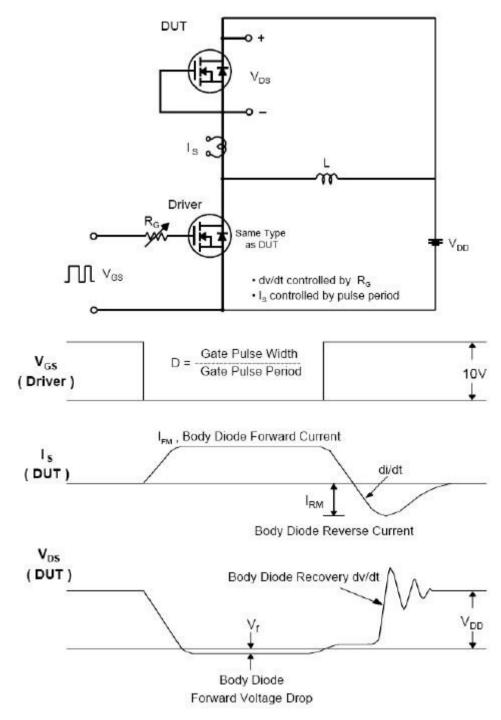


Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

N-Channel 900V MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.