

N-Channel Enhancement Mode Power MOSFET

Description

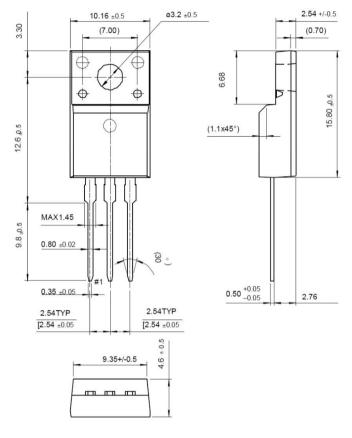
The MS5N60 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications

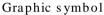
Features

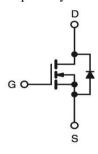
- BVDSS=650V typically @ Tj=150°C
- Low On Resistance
- Simple Drive Requirement
- · Low Gate Charge
- · Fast Switching Characteristic
- · RoHS compliant package

Application

- · Open Framed Power Supply
- Adapter
- STB


Package type: TO-220AB


Packing & Order Information


50/Tube; 1,000/Box

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)						
Symbol	Parameter	Value	Unit			
V_{DSS}	Drain to Source Voltage	600	V			
V_{GS}	Gate to Source Voltage	±30	V			
I_{D}	Continuous Drain Current (TC=25°C)	4.5	A			
1D	Continuous Drain Current (TC=100°C)	2.6	A			
I_{DM}	Drain Current Pulsed	18	A			
Eas	Single Pulsed Avalanche Energy	58.6	mJ			
Ear	Repetitive Avalanche Energy	10	mJ			
I _{AR}	Avalanche Current	4.5	A			
dv/dt	Peak Diode Recovery dv/dt	4.5	V/ns			

Drain current limited by maximum junction temperature

MS 5 N 6 0

N-Channel Enhancement Mode Power MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)						
Symbol	Parameter	Value	Unit			
T_L	TL Maximum Temperature for Soldering @ Lead at 0.125 in(0.318mm) from case for 10 seconds	300	°C			
T_{PKG}	TPKG Maximum Temperature for Soldering @ Package Body for 10 seconds	260	°C			
	Total Power Dissipation(@TC = 25 °C) 100 W	33	W			
P_D	Derating Factor above 25 °C	0.26	W/°C			
T _{STG}	Operating Junction Temperature	-55 to +150	°C			
T _J	Storage Temperature	150	°C			

Note:

- 1. Repetitive rating; pulse width limited by maximum junction temperature.
- 2. I_{AS} =4A, V_{DD} =50V, L=8mH, V_{G} =10V, starting TJ=+25°C.
- 3. I_{SD}≤4A, dI/dt≤100A/µs, VDD≤BVDSS, starting TJ=+25°C.

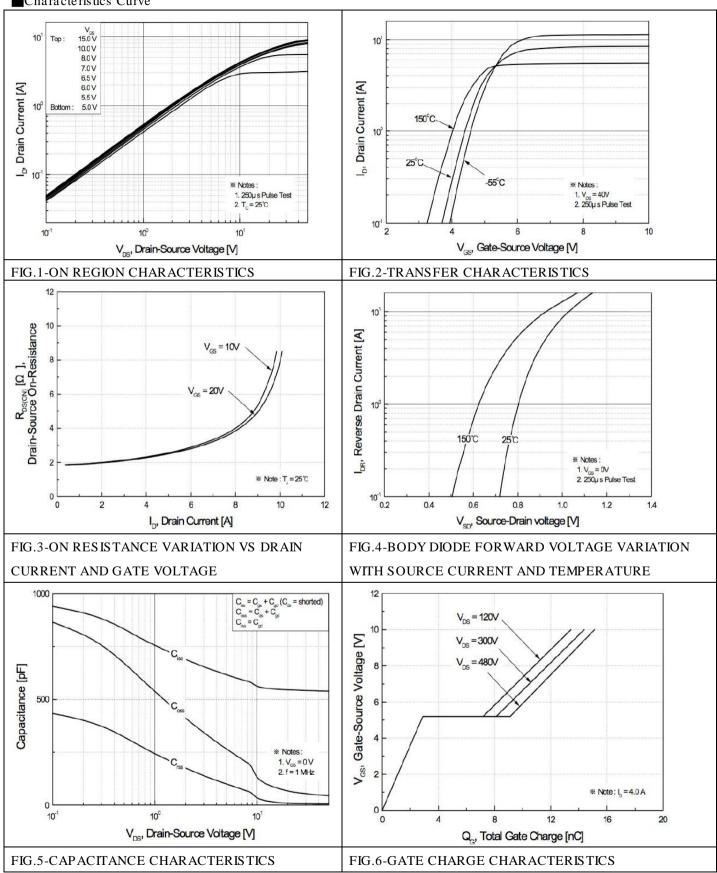
Thermal Characteristics							
Symbol	Parameter		Ilmita				
		Min.	Typ.	Max.	Units		
Rөлс	Thermal Resistance, Junction-to-Case			3.75	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient			62.5	°C/W		

Static Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D = 250 μA	600			V	
ΔBV_{DSS} $/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		0.6		V/°C	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	2.0		4.0	V	
I_{DSS}	Drain-Source Leakage Current	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$			1 10	uA nA	
I _{GSS}	Gate-Source Leakage, Forward	$V_{GS} = \pm 30$			100	nA	
R _{DS(ON)}	Static Drain-Source On-state Resis-tance	$V_{GS} = -10V$, $I_D = 2.25$ A		2.0	2.5	Ω	

Dynamic Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
$Q_{\rm g}$	Total Gate Charge	$V_{DS} = 300 \text{ V},$ $V_{GS} = 10 \text{ V},$ $I_{D} = 4.5 \text{ A}$		16		nC	
Q_{gs}	Gate-Source Charge			3.3		nC	
Q_{gd}	Gate-Drain Charge			6.2		nC	
	(Miller Charge)			0.2			

N-Channel Enhancement Mode Power MOSFET

Dynamic Characteristics							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
$t_{d(on)}$	Turn-On Delay Time			9.6		ns	
t _r	Rise Time	$V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A},$		12.2		ns	
$t_{ m d(off)}$	Turn-Off Delay Time	$V_{GS} = 10 \text{ V},$ $R_G = 10 \Omega$		22.3		ns	
tf	Fall Time	KG - 10 12		14.8		ns	
C _{ISS}	Input Capacitance			700		pF	
Coss	Output Capacitance	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$		86		pF	
C _{RSS}	Reverse Transfer Capacitance	f = 1 MHz		20		pF	


Source-D	Source-Drain Diode Maximum Ratings and Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units		
Is		$V_D=V_G=0$,			1.5	A		
I _{SM}		$V_S = 1.3 V$			4.5	A		
V_{SD}		$I_S = 4.5 A, V_{GS} = 0 V$			18	V		
t_{rr}		$V_{GS} = 0$, IF = 4.5 A,		320		ns		
Qrr		dI/dt=100A/us		2.8		uC		

^{*}Pulse Test : Pulse Width ≤300µs, Duty Cycle≤2%

N-Channel Enhancement Mode Power MOSFET

Characteristics Curve

N-Channel Enhancement Mode Power MOSFET

Characteristics Curve

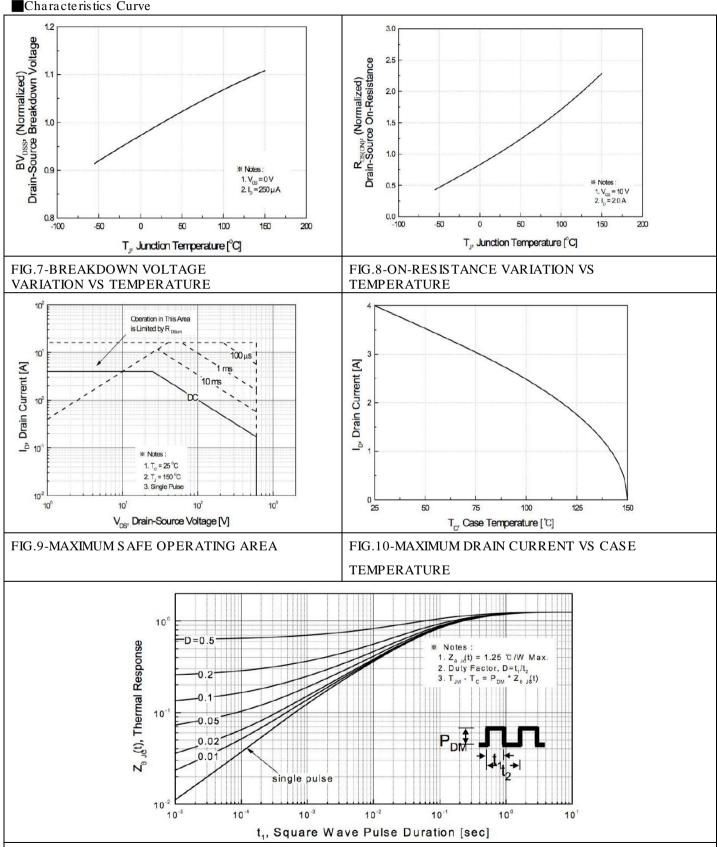


FIG.11-TRANSIENT THERMAL RESPONSE CURVE

MS 5 N 6 0

N-Channel Enhancement Mode Power MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.