

MS23P19Z

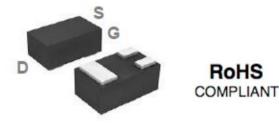
P-Channel 20V MOSFETs

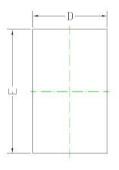
Description

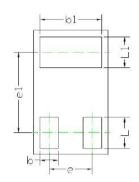
These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- -20V,-250mA, RDS(ON) =650m Ω @VGS = -4.5V
- Improved dv/dt capability
- Fast switching
- Green Device Available
- Suit for -1.5V Gate Drive Applications
- RoHS compliant package

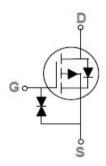

Application


- Notebook
- · Load Switch
- Battery Protection
- Hand-held Instruments


Package type: SOT-883

Packing & Order Information

3,000/Reel



S		COMMON		
M B C L	DIMENSIONS MILLIMETER			
2	MIN	NDM.	MAX	
Α	0.40	0.45	0.50	
АЗ	(0.127 BS	С	
D	0,55	0.60	0,65	
E	0.95	1.00	1.05	
е	(0.35 BSC		
e1	(0.65 BSC	,	
b	0.13	0.15	0.18	
b1	0.45	0.50	0.55	
L	0.20	0.25	0.30	
L1	0.20	0.25	0.30	

Graphic symbol

MS 23P19Z

P-Channel 20V MOSFETs

Publication Order Number: [MS23P19Z]

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)					
Symbol	Parameter	Value	Unit		
$V_{\rm DS}$	Drain-Source Voltage	-20	V		
V_{GS}	Gate-Source Voltage	±8	V		
T_	Drain Current -Continuous (TC=25°C)	-250	mA		
ID	Drain Current -Continuous (TC=100°C)	-160	mA		
I_{DM}	Drain Current Pulsed ¹	-1.0	A		
_	Power Dissipation (TC=25°C)	155	mW		
P_D	Power Dissipation - Derate above 25°C	1.25	mW/°C		
T_J	Storage Temperature Range	-55 to 150	°C		
T_{STG}	Operating Junction Temperature Range	-55 to 150	°C		

Thermal Resistance Characteristics					
Symbol	Parameter	Typ.	Max.	Units	
$R_{\theta JA}$	Thermal Resistance Junction to ambient		800	°C/W	

Electrical Characteristics (TJ=25°C, unless otherwise noted)

On Characteristics							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
V _{GS}	Gate Threshold Voltage		-0.3	-0.7	-1.0	V	
	V _{GS(th)} Temperature Coefficient	$V_{DS} = V_{GS} \; , \; I_D = 250 \mu A$		3		mV/°C	
	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}$, $I_D = -0.2 \text{ A}$		500	650		
D		$V_{GS} = -2.5 \text{ V}$, $I_D = -0.15 \text{ A}$		700	900	mΩ	
Rds(on)		$V_{GS} = -1.8 \text{ V}$, $I_D = -0.1 \text{ A}$		1100	1400	11122	
		$V_{GS} = -1.5 \text{ V}$, $I_{D} = -0.1 \text{ A}$		1700	2300		

Off Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0~V~,~I_D$ =250 μ A	-20			V
ΔBV_{DSS} / ΔT_J	BV _{DSS} Temperature Coefficient	I_D = -1 mA, Referenced to 25 °C		-0.01		V/°C
I_{DSS}	Drain-Source Leakage Current	$\begin{aligned} V_{DS} &= -20 \ V \ , \ V_{GS} = 0 \ V \ , \ T_J = 125 \ ^{\circ}C \\ V_{DS} &= -16 \ V \ , \ V_{GS} = 0 \ V \ , \ T_J = 125 \ ^{\circ}C \end{aligned}$			-1 -10	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±20	uA

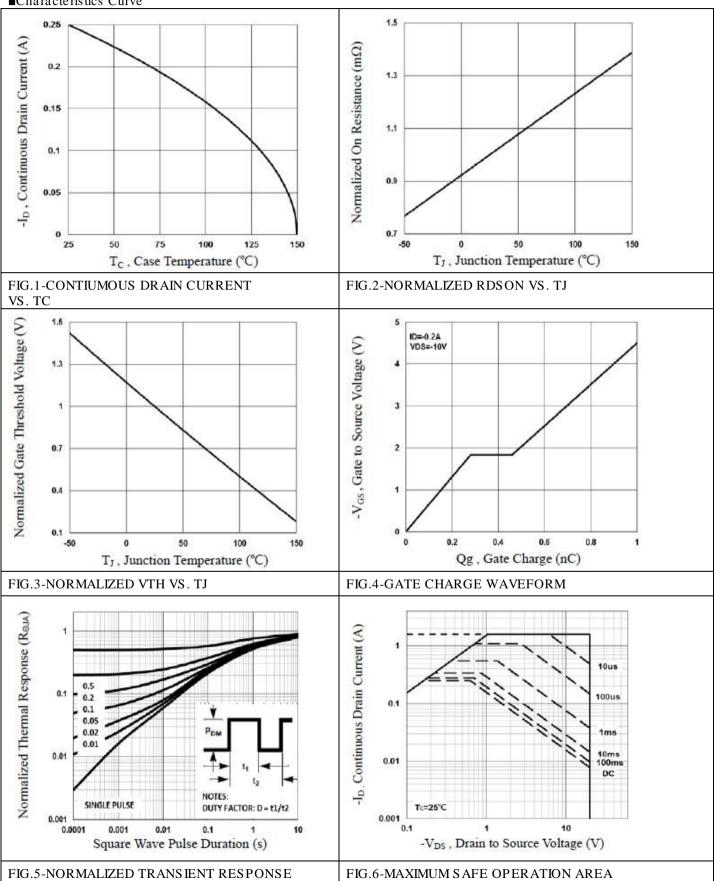
MS 23P19Z

P-Channel 20V MOSFETs

Dynamic	Dynamic Characteristics							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units		
Q_g	Total Gate Charge ^{2,3}			1	2	nC		
Q_{gs}	Gate-Source Charge ^{2,3}	$V_{DS} = -10 \text{ V}, I_D = -0.2 \text{ A},$ $V_{GS} = -4.5 \text{ V}$		0.28	0.5	nC		
Q_{gd}	Gate-Drain Charge ^{2,3}	$V_{GS} = -4.5 \text{ V}$		0.18	0.4	nC		
$T_{d(on)}$	Turn-On Time ^{2,3}			8	16	ns		
T_r	Turn-On Time ^{2,3}	$V_{DD} = -10 \text{ V}, I_D = -0.2 \text{ A},$		5.2	10	ns		
$T_{d(\text{off})}$	Turn-Off Delay Time ^{2,3}	$R_{G}=10~\Omega$, $V_{GS}=-4.5~V$		30	60	ns		
Tf	Turn-Off Fall Time ^{2,3}			18	36	ns		
C _{ISS}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1.0 \text{MHz}$		40	78	pF		
Coss	Output Capacitance			15	30	pF		
Crss	Reverse Transfer Capacitance			6.5	13	pF		

Drain-Source Diode Characteristics and Maximum Ratings							
Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units	
Is	Continuous Source Current				-0.25		
I_{SM}	Pulsed Source Current	$V_G=V_D=0V$, Force Current			-0.5	A	
V_{SD}	Diode Forward Voltage	$I_S = -0.2 \text{ A}$, $V_{GS} = 0 \text{ V}$, $T_J = 125 ^{\circ}\text{C}$			-1	V	

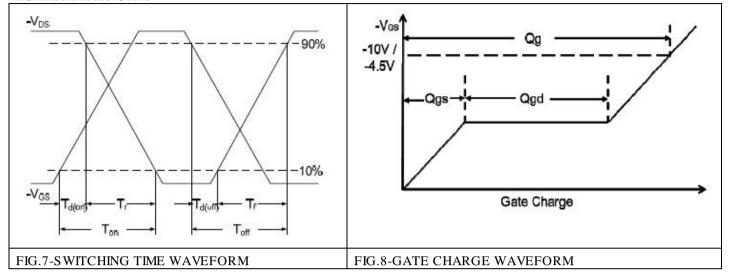
Notes;


- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed , pulse width $\leq 300 \, \text{us}$, duty cycle $\leq 2\%$.
- 3. Essentially independent of operating temperature.

MS23P19Z

P-Channel 20V MOSFETs

■Characteristics Curve



MS 23P19Z

P-Channel 20V MOSFETs

■Characteristics Curve

MS23P19Z

P-Channel 20V MOSFETs

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.