

500V N-channel MOSFET

Description

The MS18N50 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications

Features

- Originative New Design
- Very Low Intrinsic Capacitances
- Excellent Switching Characteristics
- 100% EAS Test
- Extended Safe Operating Area
- RoHS compliant package

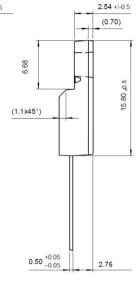
Application

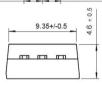
- High current, High speed switching
- PFC (Power Factor Correction)
- SMPS (Switched Mode Power Supplies)

Package type : TO-220AB

Packing & Order Information

50/Tube ; 1,000/Box




MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

RoHS COMPLIANT

Absolute Maximum Ratings					
Symbol	Parameter	Value	Unit		
V _{DS}	Drain-Source Voltage	500	V		
V _{GS}	Gate-Source Voltage	±30	V		
Ŀ	Drain Current -Continuous (TC=25°C)	18	Α		
Ib Drain Current -Continuous (TC=100°C) IDM Drain Current -Pulsed EAS Single Pulsed Avalanche Energy	Drain Current -Continuous (TC=100°C)	10.8	А		
I _{DM}	Drain Current -Pulsed	72	А		
Eas	Single Pulsed Avalanche Energy	990	mJ		
E _{AR}	Repetitive Avalanche Energy	23.5	mJ		
dV/dt	Peak Diode Recovery dV/dt	4.5	V/ns		
T _J , Tstg	Operating Junction and Storage Temperature	-55~+150	°C		
D	Power Dissipation (TC=25°C)	238	W		
PD	Power Dissipation (TC=100°C)	1.8	W		

ø3.2 +0.5 10.16 ±0.5 3.30 (7.00) 6.68 0 1 12.6 0.5 (1.1x45° MAX1.45 9.8 ±0.5 0.80 ±0.02 (30 0.35 ±0.05 2 54TYP 2.54TYP [2.54 ±0.05 2.54 ±0.05

Graphic symbol

500V N-channel MOSFET

• Drain current limited by maximum junction temperature

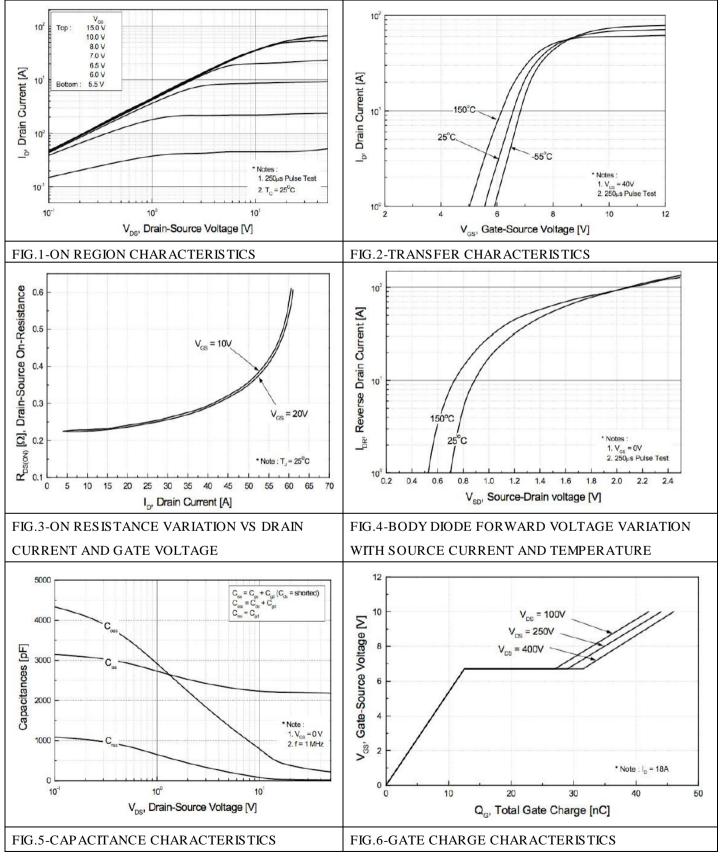
Thermal Characteristics					
Symbol	Parameter	Value	Units		
Rthjc	Thermal Resistance resistance	0.53	°C /W		
RθJA	Thermal Resistance resistance	62.5	°C/W		

Static Characteristics					
Symbol	Test Conditions	Min	Typ.	Max.	Units
V _{GS}	$V_{DS}=V_{GS},I_D=250\mu A$	3.0		5.0	v
BV _{DSS}	$V_{GS}=0~V~,~I_D\!=\!250\mu\text{A}$	500			V
$\Delta B V_{DSS}/\Delta T_J$	$I_{\rm D}$ = 250µA, Referenced to 25°C		0.6		V/°C
I _{DSS}				1 10	uA
I _{GSSF}	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	$V_{GS} = -30 V, V_{DS} = 0 V$			-100	nA
*RDS(ON)	$V_{GS} = 10 \ V \ , \ I_D = 9 \ A$		0.25	0.32	Ω

Dynamic Characteristics					
Symbol	Test Conditions	Min	Typ.	Max.	Units
CISS	$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f=1.0MHz}$		2500		pF
Coss			400		pF
C _{RSS}			40		pF
t _{d(on)}			70		ns
tr			190		ns
$t_{d(off)}$	$\frac{1}{1000} = 250 \text{ V}, \text{ I}_{\text{D}} = 18 \text{ A}, \text{ R}_{\text{G}} = 25 \Omega$		100		ns
tf			100		ns
Qg	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 18 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$		48.5		nC
Qgs			14		nC
Q_{gd}			22		nC

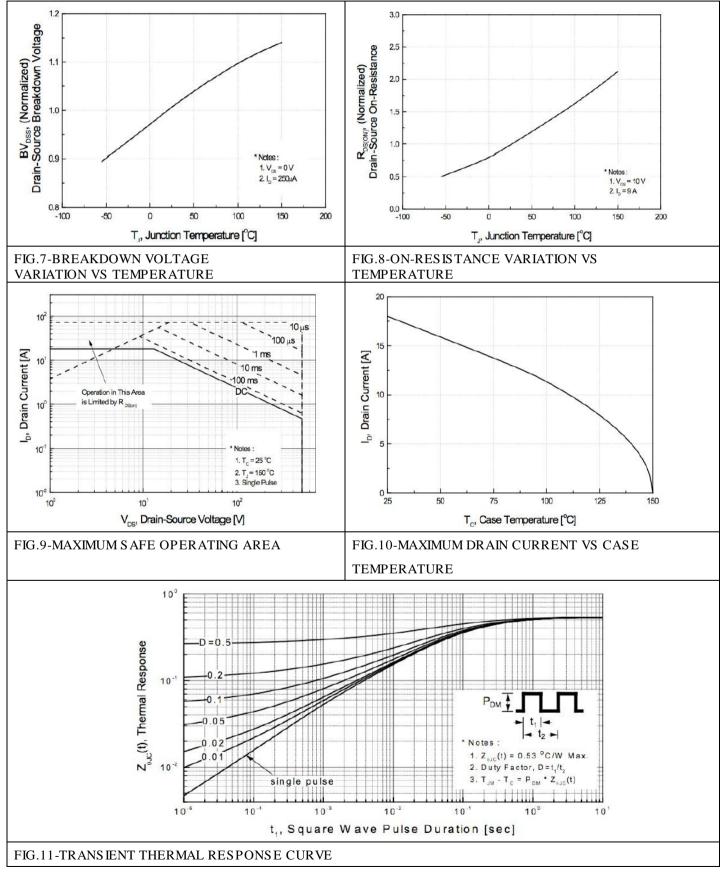
Source-Drain Diode Characteristics					
Symbol	Test Conditions	Min	Typ.	Max.	Units
Is				18	
Ism				72	A
V _{SD}	$I_S = 18 \text{ A}, V_{GS} = 0 \text{ V}$			1.5	V
t _{rr}	$I_F = 18 \text{ A}, V_{GS} = 0 \text{ V}$		550		ns
Qrr	diF/dt=100A/us		5.5		nC

500V N-channel MOSFET

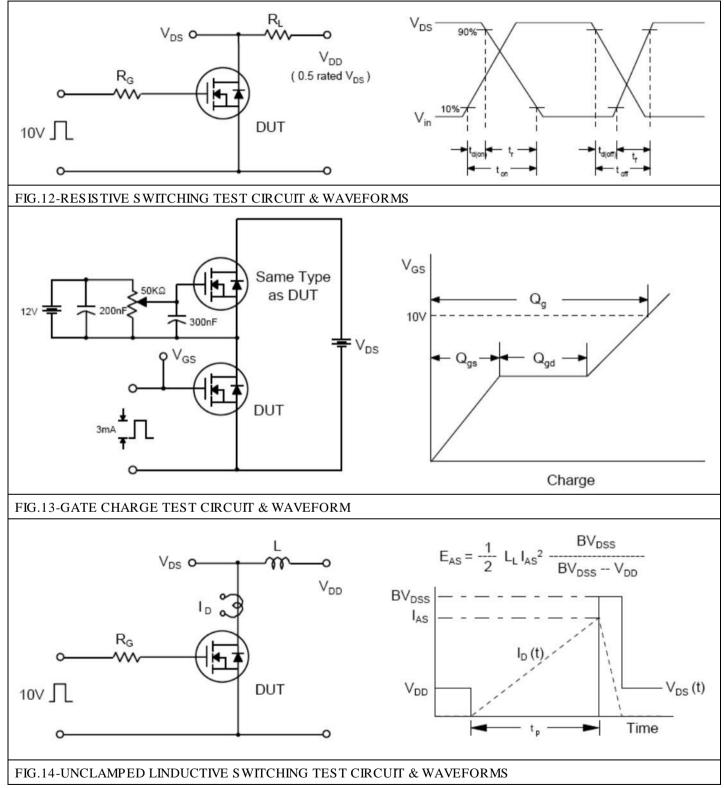

Notes:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L= 5.5mH,I_{AS}= 18.0A,V_{DD}=50V,R_G= 25Ω ,Starting TJ= 25° C
- 3. I_{SD} \leq 16.0 A, di/dt \leq 200A/µs, VDD \leq BVDSS, Starting TJ = 25°C
- 4. Pulse Test : Pulse Width \leq 300µs, Duty Cycle \leq 2%
- 5. Essentially Independent of Operating Temperature

500V N-channel MOSFET


Characteristic Curves

500V N-channel MOSFET


Typical Electrical Characteristics

500V N-channel MOSFET

Characteristics Test Circuit & Waveform

500V N-channel MOSFET

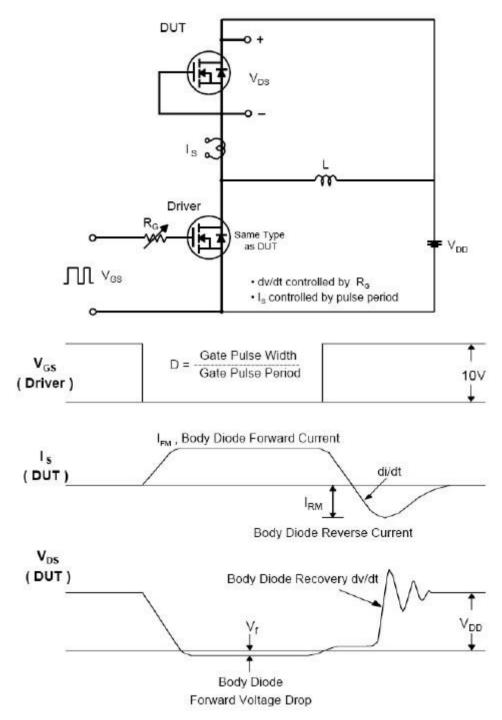


Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

500V N-channel MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

(i) Any and all liability arising out of the application or use of any product.

(ii) Any and all liability, including without limitation special, consequential or incidental damages.

(iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.